File: proto.tex

package info (click to toggle)
spooles 2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,012 kB
  • sloc: ansic: 146,834; csh: 3,615; makefile: 2,040; perl: 74
file content (1273 lines) | stat: -rw-r--r-- 53,881 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
\par
\section{Prototypes and descriptions of {\tt Chv} methods}
\label{section:Chv:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt Chv} object.
\par
\subsection{Basic methods}
\label{subsection:Chv:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv * Chv_new ( void ) ;
\end{verbatim}
\index{Chv_new@{\tt Chv\_new()}}
This method simply allocates storage for the {\tt Chv} structure 
and then sets the default fields by a call to 
{\tt Chv\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_setDefaultFields ( Chv *chv ) ;
\end{verbatim}
\index{Chv_setDefaultFields@{\tt Chv\_setDefaultFields()}}
The structure's fields are set to default values:
{\tt id} = {\tt -1}, {\tt nD} = {\tt nL} = {\tt nU} = 0,
{\tt type} = {\tt SPOOLES\_REAL},
{\tt symflag} = {\tt SPOOLES\_SYMMETRIC},
and {\tt rowind} = {\tt colind} = {\tt entries} = {\tt next} 
= {\tt NULL} .
The {\tt wrkDV} object has its default fields set via a call to
{\tt DV\_setDefaultFields()}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_clearData ( Chv *chv ) ;
\end{verbatim}
\index{Chv_clearData@{\tt Chv\_clearData()}}
This method clears the object and free's any owned data
by invoking the {\tt \_clearData()} methods for its internal
{\tt DV} object.
There is a concluding call to {\tt Chv\_setDefaultFields()}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_free ( Chv *chv ) ;
\end{verbatim}
\index{Chv_free@{\tt Chv\_free()}}
This method releases any storage by a call to 
{\tt Chv\_clearData()} and then free the space for {\tt chv}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Instance methods}
\label{subsection:Chv:proto:instance}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_id ( Chv *chv ) ;
\end{verbatim}
\index{Chv_id@{\tt Chv\_id()}}
This method returns the {\it id} of the object.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_type ( Chv *chv ) ;
\end{verbatim}
\index{Chv_type@{\tt Chv\_type()}}
This method returns the {\it type} of the object.
\begin{itemize}
\item
{\tt SPOOLES\_REAL} $\Longrightarrow$ real entries
\item
{\tt SPOOLES\_COMPLEX} $\Longrightarrow$ complex entries
\end{itemize}
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_symmetryFlag ( Chv *chv ) ;
\end{verbatim}
\index{Chv_symmetryFlag@{\tt Chv\_symmetryFlag()}}
This method returns the {\it symmetry flag} of the object.
\begin{itemize}
\item
{\tt SPOOLES\_SYMMETRIC} $\Longrightarrow$ 
symmetric entries, i.e., $a_{i,j} = a_{j,i}$.
\item
{\tt SPOOLES\_HERMITIAN} $\Longrightarrow$ 
hermitian entries, i.e., $a_{i,j} = \overline{a_{j,i}}$.
\item
{\tt SPOOLES\_NONSYMMETRIC} $\Longrightarrow$ 
nonsymmetric entries.
\end{itemize}
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_dimensions ( Chv *chv, int *pnD, int *pnL, *pnU ) ;
\end{verbatim}
\index{Chv_dimensions@{\tt Chv\_dimensions()}}
This method 
fills {\tt *pnD}, {\tt *pnL} and {\tt *pnU}
with {\tt nD}, {\tt nL} and {\tt nU}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_rowIndices ( Chv *chv, int *pnrow, **prowind ) ;
\end{verbatim}
\index{Chv_rowIndices@{\tt Chv\_rowIndices()}}
This method fills {\tt *pnrow} with the number of rows ({\tt nD + nL})
and {\tt *prowind} with a pointer to the row indices.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt pnrow} or {\tt prowind} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_columnIndices ( Chv *chv, int *pncol, **pcolind ) ;
\end{verbatim}
\index{Chv_columnIndices@{\tt Chv\_columnIndices()}}
This method fills {\tt *pncol} with the number of columns 
({\tt nD + nU})
and {\tt *pcolind} with a pointer to the column indices.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt pncol} or {\tt pcolind} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int  Chv_nent ( Chv *chv ) ;
\end{verbatim}
\index{Chv_nent@{\tt Chv\_nent()}}
This method returns number of matrix entries that the object contains.
Note, for a complex chevron,
this is the number of {\it double precision complex} entries,
equal to one half the number of double precision entries 
that are stored.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
double * Chv_entries ( Chv *chv ) ;
\end{verbatim}
\index{Chv_entries@{\tt Chv\_entries()}}
This method returns the {\it entries} field of the object,
a pointer to the base location of the double precision array that
stores the complex data.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
double * Chv_diagLocation ( Chv *chv, int ichv ) ;
\end{verbatim}
\index{Chv_diagLocation@{\tt Chv\_diagLocation()}}
This method returns a pointer to the address of the entry in
the {\tt ichv}'th diagonal location.
For a real chevron,
to find the entry {\tt k} places to the right of the diagonal entry, 
add {\tt k} to the address.
To find an entry {\tt k} places below the diagonal entry, 
subtract {\tt k} from the address.
For a complex chevron,
to find the entry {\tt k} places to the right of the diagonal entry, 
add {\tt 2*k} to the address.
To find an entry {\tt k} places below the diagonal entry, 
subtract {\tt 2*k} from the address.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void * Chv_workspace ( Chv *chv ) ;
\end{verbatim}
\index{Chv_workspace@{\tt Chv\_workspace()}}
This method returns a pointer to the base address of the workspace.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void  Chv_realEntry ( Chv *chv, int irow, int jcol, double *pValue ) ;
\end{verbatim}
\index{Chv_realEntry@{\tt Chv\_realEntry()}}
This method fills {\tt *pValue} with the entry 
in row {\tt irow} and column {\tt jcol}.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt pValue} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv_locationOfRealEntry ( Chv *chv, int irow, int jcol, double **ppValue ) ;
\end{verbatim}
\index{Chv_locationOfRealEntry@{\tt Chv\_locationOfRealEntry()}}
This method fills {\tt *ppValue} with a pointer to the 
entry in row {\tt irow} and column {\tt jcol}.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt ppValue} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void  Chv_setRealEntry ( Chv *chv, int irow, int jcol, double value ) ;
\end{verbatim}
\index{Chv_setRealEntry@{\tt Chv\_setRealEntry()}}
This method sets the entry in row {\tt irow} and column {\tt jcol} 
to be {\tt value}.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void  Chv_complexEntry ( Chv *chv, int irow, int jcol, 
                         double *pReal, double *pImag ) ;
\end{verbatim}
\index{Chv_complexEntry@{\tt Chv\_complexEntry()}}
This method fills {\tt *pReal} with the real part and
{\tt *pImag} with the imaginary part of the the entry 
in row {\tt irow} and column {\tt jcol}.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt pReal} or {\tt pImag} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Chv_locationOfComplexEntry ( Chv *chv, int irow, int jcol,
                             double **ppReal, double **ppImag ) ;
\end{verbatim}
\index{Chv_locationOfComplexEntry@{\tt Chv\_locationOfComplexEntry()}}
This method fills {\tt *ppReal} with a pointer to the real part
and {\tt *ppImag} with a pointer to the imaginary part of
the entry in row {\tt irow} and column {\tt jcol}.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt ppReal} or {\tt ppImag} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void  Chv_setComplexEntry ( Chv *chv, int irow, int jcol, 
                            double real, double imag ) ;
\end{verbatim}
\index{Chv_setComplexEntry@{\tt Chv\_setComplexEntry()}}
This method sets the real and imaginary parts and the entry 
in row {\tt irow} and column {\tt jcol} to be {\tt real} and {\tt
imag}, respectively.
Note, {\tt irow} and {\tt jcol} are {\it local} indices,
i.e., $0 \le \mbox{\tt irow} < \mbox{\tt nD} + \mbox{\tt nL}$
and $0 \le \mbox{\tt jcol} < \mbox{\tt nD} + \mbox{\tt nU}$.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if {\tt irow} or {\tt jcol} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Initialization methods}
\label{subsection:Chv:proto:initial}
\par
There are three initializer methods.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_init( Chv *chv, int id, int nD, int nL, int nU, int type, int symflag ) ;
\end{verbatim}
\index{Chv_init@{\tt Chv\_init()}}
This is the initializer method used when the {\tt Chv}
object is to use its owned workspace to store indices and entries.
The number of indices and entries is computed,
the work space is set up via calls to {\tt Chv\_nbytesNeeded()}
and {\tt Chv\_setNbytesInWorkspace()},
and the scalars, pointers and buffer are set up via a call to
{\tt Chv\_setFields()}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if ${\tt nD} \le 0$,
or if {\tt nL} or ${\tt nU} < 0$,
or if {\tt type} or if {\tt symflag} is not valid,
% or if {\tt type} is not {\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
% or if {\tt symflag} is not {\tt SPOOLES\_SYMMETRIC},
% {\tt SPOOLES\_HERMITIAN} or {\tt SPOOLES\_NONSYMMETRIC}
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_initWithPointers ( Chv *chv, int id, int nD, int nL, int nU, int type, 
                    int symflag, int *rowind, int *colind, double *entries ) ;
\end{verbatim}
\index{Chv_initWithPointers@{\tt Chv\_initWithPointers()}}
This initializer method is used when the {\tt Chv}
object does not own the storage for its indices and entries,
but points into some other storage.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if ${\tt nD} \le 0$,
or if {\tt nL} or ${\tt nU} < 0$,
or if {\tt type} or if {\tt symflag} is not valid,
% or if {\tt type} is not {\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
% or if {\tt symflag} is not {\tt SPOOLES\_SYMMETRIC},
% {\tt SPOOLES\_HERMITIAN} or {\tt SPOOLES\_NONSYMMETRIC}
or if {\tt entries} or {\tt colind} is {\tt NULL},
or if {\tt symflag = SPOOLES\_NONSYMMETRIC} 
and {\tt rowind} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_initFromBuffer ( Chv *chv ) ;
\end{verbatim}
\index{Chv_initFromBuffer@{\tt Chv\_initFromBuffer()}}
This initializer method is used to set the scalar and pointer fields
when the object's buffer is already preloaded.
This functionality is used in the MPI factorization where a {\tt
Chv} object is sent and received, more precisely, the workspace
buffer owned by the {\tt Chv} object is sent and received.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Search methods}
\label{subsection:Chv:proto:search}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_maxabsInDiagonal11 ( Chv *chv, int mark[], int tag, double *pmaxval ) ;
\end{verbatim}
\index{Chv_maxabsInDiagonal11@{\tt Chv\_maxabsInDiagonal11()}}
This method returns the location of the first tagged element with the
largest magnitude in the diagonal of the (1,1) block.
Element {\tt jj} must have {\tt mark[jj] = tag} to be eligible.
Its magnitude is returned in {\tt *pmaxval}.
Note, if the chevron is complex, the location is in terms 
of the complex entries, not in the real entries, 
i.e., if {\tt k = Chv\_maxabsDiagonal11(chv,...)},
then the complex entry is found in {\tt chv->entries[2*kk:2*kk+1]}.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt mark} or {\tt pmaxval} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_maxabsInRow11 ( Chv *chv, int irow, int colmark[],
                        int tag, double *pmaxval ) ;
\end{verbatim}
\index{Chv_maxabsInRow11@{\tt Chv\_maxabsInRow11()}}
This method returns the location of the first element with the
largest magnitude in row {\tt irow} of the (1,1) block.
Element {\tt jj} must have {\tt colmark[jj] = tag} to be eligible.
Its magnitude is returned in {\tt *pmaxval}.
Note, if the chevron is complex,
the location is in terms of the complex entries, not in the
real entries, i.e., if {\tt k = Chv\_maxabsRow11(chv,...)},
then the complex entry is found in {\tt chv->entries[2*kk:2*kk+1]}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL} or {\tt irow} is not in {\tt [0,n1-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_maxabsInColumn11 ( Chv *chv, int jcol, int rowmark[],
                           int tag, double *pmaxval ) ;
\end{verbatim}
\index{Chv_maxabsInColumn11@{\tt Chv\_maxabsInColumn11()}}
This method returns the location of the first element with the
largest magnitude in column {\tt jcol} of the (1,1) block.
Element {\tt jj} must have {\tt rowmark[jj] = tag} to be eligible.
Its magnitude is returned in {\tt *pmaxval}.
Note, if the chevron is complex,
the location is in terms of the complex entries, not in the
real entries, i.e., if {\tt k = Chv\_maxabsColumn11(chv,...)},
then the complex entry is found in {\tt chv->entries[2*kk:2*kk+1]}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL} or {\tt irow} is not in {\tt [0,n1-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_maxabsInRow ( Chv *chv, int irow, int colmark[],
                      int tag, double *pmaxval ) ;
\end{verbatim}
\index{Chv_maxabsInRow@{\tt Chv\_maxabsInRow()}}
This method returns the location of the first element with the
largest magnitude in row {\tt irow}.
Element {\tt jj} must have {\tt colmark[jj] = tag} to be eligible.
Its magnitude is returned in {\tt *pmaxval}.
Note, if the chevron is complex,
the location is in terms of the complex entries, not in the
real entries, i.e., if {\tt k = Chv\_maxabsRow(chv,...)},
then the complex entry is found in {\tt chv->entries[2*kk:2*kk+1]}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL} or {\tt irow} is not in {\tt [0,n1-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_maxabsInColumn ( Chv *chv, int jcol, int rowmark[],
                         int tag, double *pmaxval ) ;
\end{verbatim}
\index{Chv_maxabsInColumn@{\tt Chv\_maxabsInColumn()}}
This method returns the location of the first element with the
largest magnitude in column {\tt jcol}.
Element {\tt jj} must have {\tt rowmark[jj] = tag} to be eligible.
Its magnitude is returned in {\tt *pmaxval}.
Note, if the chevron is complex,
the location is in terms of the complex entries, not in the
real entries, i.e., if {\tt k = Chv\_maxabsColumn11(chv,...)},
then the complex entry is found in {\tt chv->entries[2*kk:2*kk+1]}.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL} or {\tt irow} is not in {\tt [0,n1-1]},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
double Chv_quasimax ( Chv *chv, int rowmark[], int colmark[]
                      int tag, int *pirow, int *pjcol ) ;
\end{verbatim}
\index{Chv_quasimax@{\tt Chv\_quasimax()}}
This method searches for a {\it quasimax} entry in the $(1,1)$
block, an entry $a_{i,j}$ that has largest magnitude 
of the tagged entries in row $i$ and column $j$.
An entry $a_{i,j}$ is {\it tagged} when {\tt rowmark[i] = tag}
and {\tt colmark[j] = tag}.
On return, 
{\tt *pirow} is filled with the row id and
{\tt *pjcol} is filled with the column id of the quasimax entry.
The return value is the magnitude of the entry.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt rowmark}, {\tt colmark}, {\tt pirow} or {\tt pjcol}
is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_fastBunchParlettPivot ( Chv *chv, int mark[], int tag, 
                                 int *pirow, int *pjcol ) ;
\end{verbatim}
\index{Chv_fastBunchParlettPivot@{\tt Chv\_fastBunchParlettPivot()}}
This method is used only for a symmetric or hermitian object and 
finds a $1 \times 1$ or $2 \times 2$ pivot 
that is suitable for elimination.
Only pivots from the $(1,1)$ block can be chosen.
A diagonal element $a_{r,r}$ with maximum magnitude is first found 
using the {\tt Chv\_maxabsInDiagonal11()} method.
We then find the element $a_{r,k}$ in that row that has 
a maximum magnitude.
If $|a_{r,r}| > 0.6404 |a_{r,k}|$ 
then we accept the $1 \times 1$ pivot element.
Otherwise we look for an offdiagonal element that is largest in its
row and column and return it as a $2 \times 2$ pivot.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt mark}, {\tt pirow} or {\tt pjcol} is {\tt NULL}, 
an error message is printed and the method returns.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Pivot methods}
\label{subsection:Chv:proto:pivot}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_findPivot ( Chv *chv, DV *workDV, double tau, int ndelay,
                    int *pirow, int *pjcol, int *pntest ) ;
\end{verbatim}
\index{Chv_findPivot@{\tt Chv\_findPivot()}}
This method finds and tests a pivot, where if it were used at the
next elimination step, each entry in $L$ and $U$ would have
magnitude less than or equal to {\tt tau}.
The {\tt workDV} object is used for workspace,
it is resized as necessary.
The {\tt ndelay} parameter allows one to specify the number of leading
rows and columns to ignore, useful when delayed rows and columns
have been placed in the leading portion of the chevron.
The {\tt pirow}, {\tt pjcol} and {\tt pntest} addresses are filled
with the pivot row, pivot column, and number of pivot tests
performed to find the pivot.
If no pivot was found, {\tt pirow} and {\tt pjcol} are filled with
{\tt -1}.
The return value is the size of the pivot.
If the chevron is symmetric, we can find a 
$1 \times 1$ or $2 \times 2$ pivot.
If the chevron is nonsymmetric, we only find a $1 \times 1$ pivot.
A return value of zero means that no pivot was found.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt workDV}, {\tt pirow}, {\tt pjcol} or {\tt pntest}
is {\tt NULL},
or if ${\tt tau} < 1.0$, or if ${\tt ndelay} < 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Update methods}
\label{subsection:Chv:proto:updates}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_updateS ( Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV ) ;
void Chv_updateH ( Chv *chv, SubMtx *mtxD, SubMtx *mtxU, DV *tempDV ) ;
void Chv_updateN ( Chv *chv, SubMtx *mtxL, SubMtx *mtxD, SubMtx *mtxU, 
                   DV *tempDV ) ;
\end{verbatim}
\index{Chv_updateS@{\tt Chv\_updateS()}}
\index{Chv_updateH@{\tt Chv\_updateH()}}
\index{Chv_updateN@{\tt Chv\_updateN()}}
These methods perform an update to a chevron during the factorization.
For a symmetric chevron, we compute
\begin{eqnarray*}
T_{J \cap \bnd{I},J \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},J \cap \bnd{I}} 
- U_{I,J \cap \bnd{I}}^T D_{I,I} U_{I, J \cap \bnd{I}} \\
T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
- U_{I,J \cap \bnd{I}}^T D_{I,I} U_{I, \bnd{J} \cap \bnd{I}}
\end{eqnarray*}
where $D$ is diagonal or block diagonal with $1 \times 1$ and/or
symmetric $2 \times 2$ pivots. 
$U$ is stored by sparse or dense columns.
For a Hermitian chevron, we compute
\begin{eqnarray*}
T_{J \cap \bnd{I},J \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},J \cap \bnd{I}} 
- U_{I,J \cap \bnd{I}}^H D_{I,I} U_{I, J \cap \bnd{I}} \\
T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
- U_{I,J \cap \bnd{I}}^H D_{I,I} U_{I, \bnd{J} \cap \bnd{I}}
\end{eqnarray*}
where $D$ is diagonal or block diagonal with $1 \times 1$ and/or
Hermitian $2 \times 2$ pivots. 
$U$ is stored by sparse or dense columns.
For a nonsymmetric chevron, we compute
\begin{eqnarray*}
T_{J \cap \bnd{I},J \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},J \cap \bnd{I}} 
- L_{J \cap \bnd{I},I} D_{I,I} U_{I, J \cap \bnd{I}} \\
T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
& := & T_{J \cap \bnd{I},\bnd{J} \cap \bnd{I}} 
- L_{J \cap \bnd{I},I} D_{I,I} U_{I, \bnd{J} \cap \bnd{I}} \\
T_{\bnd{J} \cap \bnd{I},J \cap \bnd{I}} 
& := & T_{\bnd{J} \cap \bnd{I},J \cap \bnd{I}} 
- L_{\bnd{J} \cap \bnd{I},I} D_{I,I} U_{I, J \cap \bnd{I}} 
\end{eqnarray*}
where $D$ is diagonal,
$L$ is stored by sparse or dense rows, and
$U$ is stored by sparse or dense columns.
{\tt tempDV} is a temporary working vector whose storage 
is resized as necessary.
\par \noindent {\it Error checking:}
If {\tt chvT}, {\tt mtxL}, {\tt mtxD}, {\tt mtxU} or {\tt tempDV}
is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Assembly methods}
\label{subsection:Chv:proto:assembly}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_addChevron ( Chv *chv, double alpha[], int ichv, int chvsize,
                      int chvind[], double chvent[] ) ;
\end{verbatim}
\index{Chv_addChevron@{\tt Chv\_addChevron()}}
This method is used to assemble entries from the matrix pencil
$A + \sigma B$ into the block chevron object.
Typically the entries from $A$ or $B$ will come from a {\tt InpMtx} 
object, one of whose modes of storage is by single {\tt chevrons}.
The value {\tt ichv} is the row and column location of the diagonal
entry.
The indices found in {\tt chvind[]} are {\it offsets}.
Let {\tt off = chvind[ii]} be the offset for one of the chevron's
entries.
If $\mbox{\tt off} \ge 0$, then the entry is found in location 
{\tt (ichv, ichv+off)} of the matrix.
If $\mbox{\tt off} < 0$, then the entry is found in location 
{\tt (ichv-off, ichv)} of the matrix.
The value(s) in {\tt alpha[]} form a scalar 
used to scale the entire chevron for its assembly.
A call to assemble entries in $A$ (from the pencil $A + \sigma B$)
would have {\tt alpha[] = (1.0,0.0)};
to assemble entries in $B$ (from the pencil $A + \sigma B$)
would have $\mbox{\tt alpha[]} = (Real(\sigma),Imag(\sigma))$.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt chvind}, {\tt chvent} or {\tt alpha} is {\tt NULL},
or if {\tt ichv} or  {\tt chvsize} are less than zero,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_assembleChv ( Chv *chvJ, Chv *chvI ) ;
\end{verbatim}
\index{Chv_assembleChv@{\tt Chv\_assembleChv()}}
This method is used to assemble entries from one {\tt Chv} object
into another.
The application is during a factorization with pivoting,
postponed entries from the children are stored in the {\tt chvI Chv}
object and need to be assembled into the final working front,
along with all updates from the descendents (which are stored in
the {\tt chvJ Chv} object.
Note, the row and column indices of {\tt chvI} {\it must nest}
with those of {\tt chvJ}.
\par \noindent {\it Error checking:}
If {\tt chvI} or {\tt chvJ} is {\tt NULL},
or if their {\tt symflag} fields are not identical,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_assemblePostponedData ( Chv *newchv, Chv *oldchv, Chv *firstchild ) ;
\end{verbatim}
\index{Chv_assemblePostponedData@{\tt Chv\_assemblePostponedData()}}
This method is used to assemble a {\tt Chv} object for a front
({\tt oldchv})
along with any postponed data from the children
(objects are held in a list where {\tt firstchild} is the head)
into a {\tt Chv} object {\tt newchv}.
The return value is the number of delayed rows and columns from the
children fronts which are found in the leading rows and columns of
the chevron.
\par \noindent {\it Error checking:}
If {\tt newchv}, {\tt oldchv} or {\tt firstchild} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Factorization methods}
\label{subsection:Chv:proto:factor}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_factorWithPivoting ( Chv *chv, int ndelay, int pivotflag, 
                IV *pivotsizesIV, DV *workDV, double tau, int *pntest ) ;
\end{verbatim}
\index{Chv_factorWithPivoting@{\tt Chv\_factorWithPivoting()}}
This method factors a front using pivoting for numerical stability.
The number of rows and columns that have been delayed (assembled
from the children) is given by {\tt ndelay}, this allows the method
that finds the pivots to skip over these rows and columns since no
pivot can be found there.
When pivoting is enabled ({\tt pivotflag} is {\tt SPOOLES\_PIVOTING}), 
the {\tt workDV}
object used during the search process for pivots
must be non-{\tt NULL}, 
{\tt tau} is the upper bound on factor entries, and {\tt pivotsizesIV}
must be non-{\tt NULL} when the front is symmetric or Hermitian.
The address {\tt pntest} is incremented with the number of pivot
tests by the {\tt Chv\_findPivot()} method.
The return value is the number of eliminated rows and columns.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if  {\tt pivotflag} is not valid,
or if {\tt ndelay} is negative,
or if {\tt pivotflag == SPOOLES\_PIVOTING} 
and {\tt workDV} is {\tt NULL} or {\tt tau} is less than {\tt 1.0},
or if the chevron is symmetric or Hermitian, 
{\tt pivotflag == SPOOLES\_PIVOTING} and
{\tt pivotsizesIV} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_factorWithNoPivoting ( Chv *chv, PatchAndGoInfo *info ) ;
\end{verbatim}
\index{Chv_factorWithNoPivoting@{\tt Chv\_factorWithNoPivoting()}}
This method factors a front without using pivoting 
for numerical stability.
It does support ``patch-and-go'' functionality, where if a small or
zero entry is found in the diagonal element that is to be
eliminated, some action can be taken.
The return value is the number of eliminated rows and columns.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_r1upd ( Chv *chv ) ;
\end{verbatim}
\index{Chv_r1upd@{\tt Chv\_r1upd()}}
This method is used during the factorization of a front,
performing a rank-one update of the chevron.
The return value is {\tt 1} if the pivot is nonzero,
{\tt 0} otherwise.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_r2upd ( Chv *chv ) ;
\end{verbatim}
\index{Chv_r2upd@{\tt Chv\_r2upd()}}
This method is used during the factorization of a front,
performing a rank-two update of the chevron.
The return value is {\tt 1} if the pivot is nonsingular,
{\tt 0} otherwise.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if the chevron is nonsymmetric,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_maxabsInChevron ( Chv *chv, int ichv, 
                           double *pdiagmaxabs, *prowmaxabs, *pcolmaxabs ) ;
\end{verbatim}
\index{Chv_maxabsInChevron@{\tt Chv\_maxabsInChevron()}}
This method is used during the factorization of a front
with a ``patch-and-go'' strategy.
On return, 
{\tt *pdiagmaxabs} contains the magnitude of the diagonal
entry for the chevron,
{\tt *prowmaxabs} contains the maximum magnitude of the entries
in the row of the chevron,
and {\tt *pcolmaxabs} contains the maximum magnitude of the entries
in the column of the chevron.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt pdiagmaxabs}, {\tt prowmaxabs} or {\tt pcolmaxabs}
is {\tt NULL},
or if {\tt ichv} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_zeroOffdiagonalOfChevron ( Chv *chv, int ichv ) ;
\end{verbatim}
\index{Chv_zeroOffdiagonalOfChevron@{\tt Chv\_zeroOffdiagonalOfChevron()}}
This method is used during the factorization of a front
with a ``patch-and-go'' strategy.
On return, 
the offdiagonal entries of chevron {\tt ichv} have been set to zero.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if {\tt ichv} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Copy methods}
\label{subsection:Chv:proto:copy}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_countEntries ( Chv *chv, int npivot, int pivotsizes[],
                       int countflag ) ;
\end{verbatim}
\index{Chv_countEntries@{\tt Chv\_countEntries()}}
This method counts the number of entries in the chevron that are
larger in magnitude than {\tt droptol}.
{\tt countflag} has the following meaning.
\begin{itemize}
\item {\tt CHV\_STRICT\_LOWER} $\Longrightarrow$ 
      count strict lower entries
\item {\tt CHV\_DIAGONAL} $\Longrightarrow$ count diagonal entries
\item {\tt CHV\_STRICT\_UPPER} $\Longrightarrow$ 
      count strict upper entries
\item {\tt CHV\_STRICT\_LOWER\_11} $\Longrightarrow$ 
              count strict lower entries in the (1,1) block
\item {\tt CHV\_LOWER\_21} $\Longrightarrow$ 
              count lower entries in the (2,1) block
\item {\tt CHV\_STRICT\_UPPER\_11} $\Longrightarrow$ 
              count strict upper entries in the (1,1) block
\item {\tt CHV\_UPPER\_12} $\Longrightarrow$ 
              count upper entries in the (1,2) block
\end{itemize}
This method is used to compute the necessary storage to store a
chevron as a dense front.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
or if {\tt countflag} is not valid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_countBigEntries ( Chv *chv, int npivot, int pivotsizes[],
                          int countflag, double droptol ) ;
\end{verbatim}
\index{Chv_countBigEntries@{\tt Chv\_countBigEntries()}}
This method counts the number of entries in the chevron that are
larger in magnitude than {\tt droptol}.
{\tt countflag} has the following meaning.
\begin{itemize}
\item {\tt CHV\_STRICT\_LOWER} $\Longrightarrow$ 
      count strict lower entries
\item {\tt CHV\_STRICT\_UPPER} $\Longrightarrow$ 
      count strict upper entries
\item {\tt CHV\_STRICT\_LOWER\_11} $\Longrightarrow$ 
              count strict lower entries in the (1,1) block
\item {\tt CHV\_LOWER\_21} $\Longrightarrow$ 
              count lower entries in the (2,1) block
\item {\tt CHV\_STRICT\_UPPER\_11} $\Longrightarrow$ 
              count strict upper entries in the (1,1) block
\item {\tt CHV\_UPPER\_12} $\Longrightarrow$ 
              count upper entries in the (1,2) block
\end{itemize}
This method is used to compute the necessary storage to store a
chevron as a sparse front.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
or if {\tt countflag} is not valid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_copyEntriesToVector ( Chv *chv, int npivot, int pivotsizes[],
               int length, double dvec[], int copyflag, int storeflag) ;
\end{verbatim}
\index{Chv_copyEntriesToVector@{\tt Chv\_copyEntriesToVector()}}
This method copies some entries the chevron object into a double
precision vector.
This method is called after a front has been factored and 
is used to store the factor entries into the
storage for the factor matrix.
If the front is nonsymmetric, the front contains entries
of $L$, $D$ and $U$, where $D$ is diagonal.
If the front is symmetric or Hermitian, the front contains entries
of $D$ and $U$, and $D$ is diagonal if {\tt pivotsizesIV} is {\tt
NULL} or may contain a mixture of $1 \times 1$ and $2 \times 2$
pivots otherwise.
{\tt copyflag} has the following meaning.
\begin{itemize}
\item {\tt CHV\_STRICT\_LOWER} $\Longrightarrow$ 
      copy strict lower entries
\item {\tt CHV\_DIAGONAL} $\Longrightarrow$ copy diagonal entries
\item {\tt CHV\_STRICT\_UPPER} $\Longrightarrow$ 
      copy strict upper entries
\item {\tt CHV\_STRICT\_LOWER\_11} $\Longrightarrow$ 
              copy strict lower entries in the (1,1) block
\item {\tt CHV\_LOWER\_21} $\Longrightarrow$ 
              copy lower entries in the (2,1) block
\item {\tt CHV\_STRICT\_UPPER\_11} $\Longrightarrow$ 
              copy strict upper entries in the (1,1) block
\item {\tt CHV\_UPPER\_12} $\Longrightarrow$ 
              copy upper entries in the (1,2) block
\end{itemize}
\par
%% The {\tt DFrontMtx} object presently stores the entries in $U$ 
%% by columns and the entries in $L$ by rows. 
%% This allows us to use dot product kernels during the factorization.
%% On other architectures it may be more efficient to have {\tt axpy}
%% kernels, in which the entries in $U$ would be stored by rows and
%% the entries in $L$ stored by columns.
%% This method supports both formats, where 
If {\tt storeflag} is {\tt CHV\_BY\_ROWS}, 
the entries are stored by rows
and if {\tt storeflag} is {\tt CHV\_BY\_COLUMNS}, 
the entries are stored by columns.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt dvec} is {\tt NULL}
or if {\tt length} is less than the number of entries to be copied,
or if {\tt copyflag} or {\tt storeflag} is valid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_copyBigEntriesToVector ( Chv *chv, int npivot, int pivotsizes[],
                         int sizes[], int ivec[], double dvec[], 
                         int copyflag, int storeflag, double droptol ) ;
\end{verbatim}
\index{Chv_copyBigEntriesToVector@{\tt Chv\_copyBigEntriesToVector()}}
This method also copies some entries the chevron object into a double
precision vector, but only those entries whose magnitude is
greater than or equal to {\tt droptol} are copied.
This method is called after a front has been factored and 
is used to store the factor entries of large magnitude into the
storage for the factor matrix.
If the front is nonsymmetric, the front contains entries
of $L$, $D$ and $U$, where $D$ is diagonal.
If the front is symmetric, the front contains entries
of $D$ and $U$, and $D$ is diagonal if {\tt pivotsizesIV} is {\tt
NULL} or may contain a mixture of $1 \times 1$ and $2 \times 2$
pivots otherwise.
{\tt copyflag} has the following meaning.
\begin{itemize}
\item {\tt CHV\_STRICT\_LOWER} $\Longrightarrow$ 
      copy strict lower entries
\item {\tt CHV\_STRICT\_UPPER} $\Longrightarrow$ 
      copy strict upper entries
\item {\tt CHV\_STRICT\_LOWER\_11} $\Longrightarrow$ 
              copy strict lower entries in the (1,1) block
\item {\tt CHV\_LOWER\_21} $\Longrightarrow$ 
              copy lower entries in the (2,1) block
\item {\tt CHV\_STRICT\_UPPER\_11} $\Longrightarrow$ 
              copy strict upper entries in the (1,1) block
\item {\tt CHV\_UPPER\_12} $\Longrightarrow$ 
              copy upper entries in the (1,2) block
\end{itemize}
\par
% The {\tt DFrontMtx} object presently stores the entries in $U$ 
% by columns and the entries in $L$ by rows. 
% This allows us to use dot product kernels during the factorization.
% On other architectures it may be more efficient to have {\tt axpy}
% kernels, in which the entries in $U$ would be stored by rows and
% the entries in $L$ stored by columns.
% This method supports both formats, where 
If {\tt storeflag} is {\tt CHV\_BY\_ROWS}, 
the entries are stored by rows
and if {\tt storeflag} is {\tt CHV\_BY\_COLUMNS}, 
the entries are stored by columns.
\par
When we store the large entries in the columns of $U$,
{\tt sizes[jcol]} contains the number of large entries in column
{\tt jcol}.
The vectors {\tt ivec[]} and {\tt dvec[]} contain the row indices
and the entries that are stored.
When we store the large entries in the rows of $L$,
{\tt sizes[irow]} contains the number of large entries in column
{\tt irow}.
The vectors {\tt ivec[]} and {\tt dvec[]} contain the column indices
and the entries that are stored.
Presently there is no checking that {\tt sizes[]}, {\tt ivec[]} and
{\tt dvec[]} are large enough to store the sizes, indices and entries.
The large entry count can be obtained using the method
{\tt Chv\_countBigEntries()}.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt dvec} is {\tt NULL}
or if {\tt length} is less than the number of entries to be copied,
or if {\tt copyflag} or {\tt storeflag} is not valid,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_copyTrailingPortion ( Chv *chvI, Chv *chvJ, int offset ) ;
\end{verbatim}
\index{Chv_copyTrailingPortion@{\tt Chv\_copyTrailingPortion()}}
This method copies the trailing portion of {\tt chvJ} into {\tt chvI}.
The first {\tt offsets} chevrons are not copied, the remainder are
copied.
This method is used to extract the delayed entries from a front
which has been factored.
\par \noindent {\it Error checking:}
If {\tt chvI} or {\tt chvJ} is {\tt NULL},
or if ${\tt offset} < 0$ or {\tt offset} is greater than the number
of chevrons in {\tt chvJ},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Swap methods}
\label{subsection:Chv:proto:swap}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_swapRows ( Chv *chv, int irow, int jrow ) ;
\end{verbatim}
\index{Chv_swapRows@{\tt Chv\_swapRows()}}
This method swaps rows {\tt irow} and {\tt jrow} of the chevron.
Both rows must be less than the width {\tt nD} of the chevron.
The row ids of the two rows are also swapped.
If the chevron is symmetric, then the method
{\tt Chv\_swapRowsAndColumns()} is called.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
or if {\tt irow} or {\tt jrow} are less than 0 or greater than or equal
to {\tt nD},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_swapColumns ( Chv *chv, int icol, int jcol ) ;
\end{verbatim}
\index{Chv_swapColumns@{\tt Chv\_swapColumns()}}
This method swaps columns {\tt icol} and {\tt jcol} of the chevron.
Both columns must be less than the width {\tt nD} of the chevron.
The column ids of the two columns are also swapped.
If the chevron is symmetric, then the method
{\tt Chv\_swapRowsAndColumns()} is called.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
or if {\tt icol} or {\tt jcol} are less than 0 or greater than or equal
to {\tt nD},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_swapRowsAndColumns ( Chv *chv, int ii, int jj ) ;
\end{verbatim}
\index{Chv_swapRowsAndColumns@{\tt Chv\_swapRowsAndColumns()}}
This method swaps rows and columns {\tt ii} and {\tt jj} of the chevron.
Both must be less than the width {\tt nD} of the chevron.
The row and/or column ids are also swapped.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
or if {\tt ii} or {\tt jj} are less than 0 or greater than or equal
to {\tt nD},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Utility methods}
\label{subsection:Chv:proto:utilities}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_nbytesNeeded ( int nD, int nL, int nU, int type, int symflag ) ;
\end{verbatim}
\index{Chv_nbytesNeeded@{\tt Chv\_nbytesNeeded()}}
This method returns the number of bytes necessary to store an
object with the given dimensions and type in its workspace.
\par \noindent {\it Error checking:}
If {\tt nD}, {\tt nL}, or {\tt nU} is less than zero,
or if {\tt type} or {\tt symflag} are not valid,
% or if {\tt type} is not {\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
% or if {\tt symflag} is not {\tt SPOOLES\_SYMMETRIC},
% {\tt SPOOLES\_HERMITIAN} or {\tt SPOOLES\_NONSYMMETRIC},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Chv_nbytesInWorkspace ( Chv *chv ) ;
\end{verbatim}
\index{Chv_nbytesInWorkspace@{\tt Chv\_nbytesInWorkspace()}}
This method returns the number of bytes in the workspace.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_setNbytesInWorkspace ( Chv *chv, int nbytes ) ;
\end{verbatim}
\index{Chv_setNbytesInWorkspace@{\tt Chv\_setNbytesInWorkspace()}}
This method sets the number of bytes in the workspace.
If {\tt nbytes} is less than the number of present bytes in the
workspace, the workspace is not shrunk.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_setFields ( Chv *chv, int id, int nD, int nL, int nU, 
                     int type, int symflag ) ;
\end{verbatim}
\index{Chv_setFields@{\tt Chv\_setFields()}}
This method sets the scalar fields and {\tt rowind}, {\tt colind}
and {\tt entries} pointers.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
or if ${\tt nD} \le 0$,
or if {\tt nL} or {\tt nU} are less than zero,
or if {\tt type} or {\tt symflag} are not valid,
% or if {\tt type} is not {\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
% or if {\tt symflag} is not {\tt SPOOLES\_SYMMETRIC},
% {\tt SPOOLES\_HERMITIAN} or {\tt SPOOLES\_NONSYMMETRIC},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_shift ( Chv *chv, int shift ) ;
\end{verbatim}
\index{Chv_shift@{\tt Chv\_shift()}}
This method is used to shift the base of the entries and adjust
dimensions of the {\tt Chv} object.
If {\tt shift} is positive,
the first {\tt shift} chevrons are removed from the chevron.
If {\tt shift} is negative,
the {\tt shift} previous chevrons are prepended to the chevron.
This is a dangerous method as it changes the state of the object.
We use it during the factorization of a front, where one {\tt Chv}
object points to the entire chevron in order to swap rows and
columns, while another chevron points to the uneliminated rows
and columns of the front.
It is the latter chevron that is shifted during the factorization. 
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL}
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_fill11block ( Chv *chv, A2 *mtx ) ;
\end{verbatim}
\index{Chv_fill11block@{\tt Chv\_fill11block()}}
This method is used to fill a {\tt A2} dense matrix object with
the entries in the $(1,1)$ block of the chevron.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt mtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_fill12block ( Chv *chv, A2 *mtx ) ;
\end{verbatim}
\index{Chv_fill12block@{\tt Chv\_fill12block()}}
This method is used to fill a {\tt A2} dense matrix object with
the entries in the $(1,2)$ block of the chevron.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt mtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_fill21block ( Chv *chv, A2 *mtx ) ;
\end{verbatim}
\index{Chv_fill21block@{\tt Chv\_fill21block()}}
This method is used to fill a {\tt A2} dense matrix object with
the entries in the $(2,1)$ block of the chevron.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt mtx} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
double Chv_maxabs ( Chv *chv ) ;
\end{verbatim}
\index{Chv_maxabs@{\tt Chv\_maxabs()}}
This method returns the magnitude of the entry of largest magnitude
in the object.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
double Chv_frobNorm ( Chv *chv ) ;
\end{verbatim}
\index{Chv_frobNorm@{\tt Chv\_frobNorm()}}
This method returns the Frobenius norm of the chevron.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_sub ( Chv *chvJ, Chv *chvI ) ;
\end{verbatim}
\index{Chv_sub@{\tt Chv\_sub()}}
This method subtracts {\tt chvI} from {\tt chvJ}.
\par \noindent {\it Error checking:}
If {\tt chvJ} or {\tt chvI} is {\tt NULL},
or if their dimensions are not the same,
or if either of their {\tt entries} fields are {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_zero ( Chv *chv ) ;
\end{verbatim}
\index{Chv_zero@{\tt Chv\_zero()}}
This method zeroes the entries in the chevron.
\par \noindent {\it Error checking:}
If {\tt chv} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{IO methods}
\label{subsection:Chv:proto:IO}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_writeForHumanEye ( Chv *chv, FILE *fp ) ;
\end{verbatim}
\index{Chv_writeForHumanEye@{\tt Chv\_writeForHumanEye()}}
\par
This method writes a {\tt Chv} object to a file in an easily
readable format.
\par \noindent {\it Error checking:}
If {\tt chv} or {\tt fp} are {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Chv_writeForMatlab ( Chv *chv, char *chvname, FILE *fp ) ;
\end{verbatim}
\index{Chv_writeForMatlab@{\tt Chv\_writeForMatlab()}}
\par
This method writes a {\tt Chv} object to a file in a matlab format.
For a real chevron, a sample line is
\begin{verbatim}
a(10,5) =  -1.550328201511e-01 ;
\end{verbatim}
where chvname = {\tt "a"}.
For a complex chevron, a sample line is
\begin{verbatim}
a(10,5) =  -1.550328201511e-01 +   1.848033378871e+00*i;
\end{verbatim}
where chvname = {\tt "a"}.
The matrix indices come from the {\tt rowind[]} and {\tt colind[]}
vectors, and are incremented by one to follow the Matlab and
FORTRAN convention.
\par \noindent {\it Error checking:}
If {\tt chv}, {\tt chvname} or {\tt fp} are {\tt NULL},
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\end{enumerate}
\par