1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/* testSerial.c */
#include "../Bridge.h"
void Factor ( ) ;
void MatMul ( ) ;
void Solve ( ) ;
/*--------------------------------------------------------------------*/
void main ( int argc, char *argv[] )
/*
----------------------------------------------------------
read in Harwell-Boeing matrices, use serial factor, solve,
and multiply routines based on spooles, invoke eigensolver
created -- 98mar31 jcp
modified -- 98dec18, cca
----------------------------------------------------------
*/
{
Bridge bridge ;
char *inFileName_A, *inFileName_B, *outFileName,
*parmFileName, *type ;
char buffer[20], pbtype[4], which[4] ;
double lftend, rhtend, center, shfscl, t1, t2 ;
double c__1 = 1.0, c__4 = 4.0, tolact = 2.309970868130169e-11 ;
double eigval[1000], sigma[2];
double *evec;
int error, fstevl, lfinit, lstevl, mxbksz, msglvl, ncol, ndiscd,
neig, neigvl, nfound, nnonzeros, nrhs, nrow, prbtyp, rc,
retc, rfinit, seed, warnng ;
int c__5 = 5, output = 6 ;
int *lanczos_wksp;
InpMtx *inpmtxA, *inpmtxB ;
FILE *msgFile, *parmFile;
/*--------------------------------------------------------------------*/
if ( argc != 7 ) {
fprintf(stdout,
"\n\n usage : %s msglvl msgFile parmFile seed inFileA inFileB"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n parmFile -- input parameters file"
"\n seed -- random number seed, used for ordering"
"\n inFileA -- stiffness matrix in Harwell-Boeing format"
"\n inFileB -- mass matrix in Harwell-Boeing format"
"\n used for prbtyp = 1 or 2"
"\n", argv[0]) ;
return ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
exit(-1) ;
}
parmFileName = argv[3] ;
seed = atoi(argv[4]) ;
inFileName_A = argv[5] ;
inFileName_B = argv[6] ;
fprintf(msgFile,
"\n %s "
"\n msglvl -- %d"
"\n msgFile -- %s"
"\n parmFile -- %s"
"\n seed -- %d"
"\n stiffness file -- %s"
"\n mass file -- %s"
"\n",
argv[0], msglvl, argv[2], parmFileName, seed,
inFileName_A, inFileName_B) ;
fflush(msgFile) ;
/*
---------------------------------------------
read in the Harwell-Boeing matrix information
---------------------------------------------
*/
if ( strcmp(inFileName_A, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
MARKTIME(t1) ;
readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in header information for A",
t2 - t1) ;
/*--------------------------------------------------------------------*/
/*
---------------------------------------------------------------
read in eigenvalue problem data
neigvl -- # of desired eigenvalues
which -- which eigenvalues to compute
'l' or 'L' lowest (smallest magnitude)
'h' or 'H' highest (largest magnitude)
'n' or 'N' nearest to central value
'c' or 'C' nearest to central value
'a' or 'A' all eigenvalues in interval
pbtype -- type of problem
'v' or 'V' generalized symmetric problem (K,M)
with M positive semidefinite (vibration problem)
'b' or 'B' generalized symmetric problem (K,K_s)
with K positive semidefinite
with K_s posibly indefinite (buckling problem)
'o' or 'O' ordinary symmetric eigenproblem
lfinit -- if true, lftend is restriction on lower bound of
eigenvalues. if false, no restriction on lower bound
lftend -- left endpoint of interval
rfinit -- if true, rhtend is restriction on upper bound of
eigenvalues. if false, no restriction on upper bound
rhtend -- right endpoint of interval
center -- center of interval
mxbksz -- upper bound on block size for Lanczos recurrence
shfscl -- shift scaling parameter, an estimate on the magnitude
of the smallest nonzero eigenvalues
---------------------------------------------------------------
*/
MARKTIME(t1) ;
parmFile = fopen(parmFileName, "r");
fscanf(parmFile, "%d %s %s %d %le %d %le %le %d %le",
&neigvl, which, pbtype, &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &mxbksz, &shfscl) ;
fclose(parmFile);
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data",
t2 - t1) ;
/*
----------------------------------------
check and set the problem type parameter
----------------------------------------
*/
switch ( pbtype[1] ) {
case 'v' : case 'V' : prbtyp = 1 ; break ;
case 'b' : case 'B' : prbtyp = 2 ; break ;
case 'o' : case 'O' : prbtyp = 3 ; break ;
default :
fprintf(stderr, "\n invalid problem type %s", pbtype) ;
exit(-1) ;
}
/*
----------------------------
Initialize Lanczos workspace
----------------------------
*/
MARKTIME(t1) ;
lanczos_init_ ( &lanczos_wksp ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize lanczos workspace",
t2 - t1) ;
/*
----------------------------------
initialize communication structure
----------------------------------
*/
MARKTIME(t1) ;
lanczos_set_parm( &lanczos_wksp, "order-of-problem", &nrow, &retc );
lanczos_set_parm( &lanczos_wksp, "accuracy-tolerance", &tolact, &retc );
lanczos_set_parm( &lanczos_wksp, "max-block-size", &mxbksz, &retc );
lanczos_set_parm( &lanczos_wksp, "shift-scale", &shfscl, &retc );
lanczos_set_parm( &lanczos_wksp, "message_level", &msglvl, &retc );
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : init lanczos communication structure",
t2 - t1) ;
/*--------------------------------------------------------------------*/
/*
---------------------------------------------
create the InpMtx objects for matrix A and B
---------------------------------------------
*/
if ( strcmp(inFileName_A, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
MARKTIME(t1) ;
inpmtxA = InpMtx_new() ;
InpMtx_readFromHBfile ( inpmtxA, inFileName_A ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in A", t2 - t1) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n InpMtx A object after loading") ;
InpMtx_writeForHumanEye(inpmtxA, msgFile) ;
fflush(msgFile) ;
}
MARKTIME(t1) ;
lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__1, &retc );
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set A's parameters", t2 - t1) ;
if ( prbtyp != 3 ) {
if ( strcmp(inFileName_B, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
MARKTIME(t1) ;
inpmtxB = InpMtx_new() ;
InpMtx_readFromHBfile ( inpmtxB, inFileName_B ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in B", t2 - t1) ;
} else {
MARKTIME(t1) ;
inpmtxB = NULL ;
lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__4, &retc );
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set B's parameters", t2 - t1) ;
}
if ( msglvl > 2 && prbtyp != 3 ) {
fprintf(msgFile, "\n\n InpMtx B object after loading") ;
InpMtx_writeForHumanEye(inpmtxB, msgFile) ;
fflush(msgFile) ;
}
/*
-----------------------------
set up the solver environment
-----------------------------
*/
MARKTIME(t1) ;
rc = Setup((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA, inpmtxB,
&seed, &msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set up solver environment", t2 - t1) ;
if ( rc != 1 ) {
fprintf(stderr, "\n fatal error %d from Setup()", rc) ;
exit(-1) ;
}
/*--------------------------------------------------------------------*/
/*
-----------------------------------------------
invoke eigensolver
nfound -- # of eigenvalues found and kept
ndisc -- # of additional eigenvalues discarded
-----------------------------------------------
*/
MARKTIME(t1) ;
lanczos_run(&neigvl, &which[1] , &pbtype[1], &lfinit, &lftend,
&rfinit, &rhtend, ¢er, &lanczos_wksp, &bridge, &nfound,
&ndiscd, &warnng, &error, Factor, MatMul, Solve ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : time for lanczos run", t2 - t1) ;
/*
-------------------------
get eigenvalues and print
-------------------------
*/
MARKTIME(t1) ;
neig = nfound + ndiscd ;
lstevl = nfound ;
lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc);
fstevl = 1 ;
if ( nfound == 0 ) fstevl = -1 ;
if ( ndiscd > 0 ) lstevl = -ndiscd ;
hdslp5_ ("computed eigenvalues returned by hdserl",
&neig, eigval, &output, 39L ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get and print eigenvalues ", t2 - t1) ;
/*
-------------------------
get eigenvectors and print
-------------------------
*/
/*
MARKTIME(t1) ;
neig = min ( 50, nrow );
Lncz_ALLOCATE(evec, double, nrow, retc);
for ( i = 1 ; i <= nfound ; i++ ) {
lanczos_eigenvector ( &lanczos_wksp, &i, &i, newToOld,
evec, &nrow, &retc ) ;
hdslp5_ ( "computed eigenvector returned by hdserc",
&neig, evec, &output, 39L ) ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get and print eigenvectors ", t2 - t1) ;
*/
/*
------------------------
free the working storage
------------------------
*/
MARKTIME(t1) ;
lanczos_free( &lanczos_wksp ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : free lanczos workspace ", t2 - t1) ;
MARKTIME(t1) ;
rc = Cleanup(&bridge) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : free solver workspace ", t2 - t1) ;
if ( rc != 1 ) {
fprintf(stderr, "\n error return %d from Cleanup()", rc) ;
exit(-1) ;
}
fprintf(msgFile, "\n") ;
fclose(msgFile) ;
return ; }
|