File: testSerial.c

package info (click to toggle)
spooles 2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,012 kB
  • sloc: ansic: 146,834; csh: 3,615; makefile: 2,040; perl: 74
file content (298 lines) | stat: -rw-r--r-- 9,861 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*  testSerial.c  */

#include "../Bridge.h"

void Factor ( ) ;
void MatMul ( ) ;
void Solve ( ) ;

/*--------------------------------------------------------------------*/

void main ( int argc, char *argv[] )
/*
   ----------------------------------------------------------
   read in Harwell-Boeing matrices, use serial factor, solve,
   and multiply routines based on spooles, invoke eigensolver

   created  -- 98mar31 jcp
   modified -- 98dec18, cca
   ----------------------------------------------------------
*/
{
Bridge    bridge ;
char      *inFileName_A, *inFileName_B, *outFileName, 
          *parmFileName, *type ;
char      buffer[20], pbtype[4], which[4] ;
double    lftend, rhtend, center, shfscl, t1, t2 ;
double    c__1 = 1.0, c__4 = 4.0, tolact = 2.309970868130169e-11 ;
double    eigval[1000], sigma[2];
double    *evec;
int       error, fstevl, lfinit, lstevl, mxbksz, msglvl, ncol, ndiscd,
          neig, neigvl, nfound, nnonzeros, nrhs, nrow, prbtyp, rc, 
          retc, rfinit, seed, warnng ;
int       c__5 = 5, output = 6 ;
int       *lanczos_wksp;
InpMtx    *inpmtxA, *inpmtxB ;
FILE      *msgFile, *parmFile;

/*--------------------------------------------------------------------*/

if ( argc != 7 ) {
   fprintf(stdout, 
  "\n\n usage : %s msglvl msgFile parmFile seed inFileA inFileB"
  "\n    msglvl   -- message level"
  "\n    msgFile  -- message file"
  "\n    parmFile -- input parameters file"
  "\n    seed     -- random number seed, used for ordering"
  "\n    inFileA -- stiffness matrix in Harwell-Boeing format"
  "\n    inFileB -- mass matrix in Harwell-Boeing format"
  "\n               used for prbtyp = 1 or 2"
  "\n", argv[0]) ;
   return ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   exit(-1) ;
}
parmFileName = argv[3] ;
seed         = atoi(argv[4]) ;
inFileName_A = argv[5] ;
inFileName_B = argv[6] ;
fprintf(msgFile, 
        "\n %s "
        "\n msglvl         -- %d" 
        "\n msgFile        -- %s" 
        "\n parmFile       -- %s" 
        "\n seed           -- %d" 
        "\n stiffness file -- %s" 
        "\n mass file      -- %s" 
        "\n",
        argv[0], msglvl, argv[2], parmFileName, seed, 
        inFileName_A, inFileName_B) ;
fflush(msgFile) ;
/*
   ---------------------------------------------
   read in the Harwell-Boeing matrix information
   ---------------------------------------------
*/
if ( strcmp(inFileName_A, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
readHB_info (inFileName_A, &nrow, &ncol, &nnonzeros, &type, &nrhs) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in header information for A",
        t2 - t1) ;
/*--------------------------------------------------------------------*/
/*
   ---------------------------------------------------------------
   read in eigenvalue problem data
   neigvl -- # of desired eigenvalues
   which  -- which eigenvalues to compute
     'l' or 'L' lowest (smallest magnitude)
     'h' or 'H' highest (largest magnitude)
     'n' or 'N' nearest to central value
     'c' or 'C' nearest to central value
     'a' or 'A' all eigenvalues in interval
   pbtype -- type of problem
     'v' or 'V' generalized symmetric problem (K,M)
                with M positive semidefinite (vibration problem)
     'b' or 'B' generalized symmetric problem (K,K_s)
                with K positive semidefinite
                with K_s posibly indefinite (buckling problem)
     'o' or 'O' ordinary symmetric eigenproblem
   lfinit -- if true, lftend is restriction on lower bound of 
             eigenvalues. if false, no restriction on lower bound
   lftend -- left endpoint of interval
   rfinit -- if true, rhtend is restriction on upper bound of
             eigenvalues.  if false, no restriction on upper bound
   rhtend -- right endpoint of interval
   center -- center of interval
   mxbksz -- upper bound on block size for Lanczos recurrence
   shfscl -- shift scaling parameter, an estimate on the magnitude
             of the smallest nonzero eigenvalues
   ---------------------------------------------------------------
*/
MARKTIME(t1) ;
parmFile = fopen(parmFileName, "r");
fscanf(parmFile, "%d %s %s %d %le %d %le %le %d %le", 
       &neigvl, which, pbtype, &lfinit, &lftend, 
       &rfinit, &rhtend, &center, &mxbksz, &shfscl) ;
fclose(parmFile);
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in eigenvalue problem data",
        t2 - t1) ;
/*
   ----------------------------------------
   check and set the problem type parameter
   ----------------------------------------
*/
switch ( pbtype[1] ) {
case 'v' : case 'V' : prbtyp = 1 ; break ;
case 'b' : case 'B' : prbtyp = 2 ; break ;
case 'o' : case 'O' : prbtyp = 3 ; break ;
default :
   fprintf(stderr, "\n invalid problem type %s", pbtype) ;
   exit(-1) ;
}
/*
   ----------------------------
   Initialize Lanczos workspace
   ----------------------------
*/
MARKTIME(t1) ;
lanczos_init_ ( &lanczos_wksp ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : initialize lanczos workspace", 
        t2 - t1) ;
/*
   ----------------------------------
   initialize communication structure
   ----------------------------------
*/
MARKTIME(t1) ;
lanczos_set_parm( &lanczos_wksp, "order-of-problem",   &nrow,   &retc );
lanczos_set_parm( &lanczos_wksp, "accuracy-tolerance", &tolact, &retc );
lanczos_set_parm( &lanczos_wksp, "max-block-size",     &mxbksz, &retc );
lanczos_set_parm( &lanczos_wksp, "shift-scale",        &shfscl, &retc );
lanczos_set_parm( &lanczos_wksp, "message_level",      &msglvl, &retc );
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : init lanczos communication structure", 
        t2 - t1) ;
/*--------------------------------------------------------------------*/
/*
   ---------------------------------------------
   create the InpMtx objects for matrix A and B
   ---------------------------------------------
*/
if ( strcmp(inFileName_A, "none") == 0 ) {
   fprintf(msgFile, "\n no file to read from") ;
   exit(0) ;
}
MARKTIME(t1) ;
inpmtxA = InpMtx_new() ;
InpMtx_readFromHBfile ( inpmtxA, inFileName_A ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in A", t2 - t1) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n InpMtx A object after loading") ;
   InpMtx_writeForHumanEye(inpmtxA, msgFile) ;
   fflush(msgFile) ;
}
MARKTIME(t1) ;
lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__1, &retc );
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set A's parameters", t2 - t1) ;
if ( prbtyp != 3 ) {
   if ( strcmp(inFileName_B, "none") == 0 ) {
      fprintf(msgFile, "\n no file to read from") ;
      exit(0) ;
   }
   MARKTIME(t1) ;
   inpmtxB = InpMtx_new() ;
   InpMtx_readFromHBfile ( inpmtxB, inFileName_B ) ;
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : read in B", t2 - t1) ;
} else {
   MARKTIME(t1) ;
   inpmtxB = NULL ;
   lanczos_set_parm( &lanczos_wksp, "matrix-type", &c__4, &retc );
   MARKTIME(t2) ;
   fprintf(msgFile, "\n CPU %8.3f : set B's parameters", t2 - t1) ;
}
if ( msglvl > 2  && prbtyp != 3 ) {
   fprintf(msgFile, "\n\n InpMtx B object after loading") ;
   InpMtx_writeForHumanEye(inpmtxB, msgFile) ;
   fflush(msgFile) ;
 }
/*
   -----------------------------
   set up the solver environment
   -----------------------------
*/
MARKTIME(t1) ;
rc = Setup((void *) &bridge, &prbtyp, &nrow, &mxbksz, inpmtxA, inpmtxB,
           &seed, &msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set up solver environment", t2 - t1) ;
if ( rc != 1 ) {
   fprintf(stderr, "\n fatal error %d from Setup()", rc) ;
   exit(-1) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------------
   invoke eigensolver
   nfound -- # of eigenvalues found and kept
   ndisc  -- # of additional eigenvalues discarded
   -----------------------------------------------
*/
MARKTIME(t1) ;
lanczos_run(&neigvl, &which[1] , &pbtype[1], &lfinit, &lftend, 
	    &rfinit, &rhtend, &center, &lanczos_wksp, &bridge, &nfound,
	    &ndiscd, &warnng, &error, Factor, MatMul, Solve ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : time for lanczos run", t2 - t1) ;
/*
   -------------------------
   get eigenvalues and print
   -------------------------
*/
MARKTIME(t1) ;
neig   = nfound + ndiscd ;
lstevl = nfound ;
lanczos_eigenvalues (&lanczos_wksp, eigval, &neig, &retc);
fstevl = 1 ;
if ( nfound == 0 ) fstevl = -1 ;
if ( ndiscd > 0 ) lstevl = -ndiscd ;
hdslp5_ ("computed eigenvalues returned by hdserl",
         &neig, eigval, &output, 39L ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get and print eigenvalues ", t2 - t1) ;
/*
   -------------------------
   get eigenvectors and print
   -------------------------
*/
/*
MARKTIME(t1) ;
neig = min ( 50, nrow );
Lncz_ALLOCATE(evec, double, nrow, retc);

for ( i = 1 ; i <= nfound ; i++ ) {
   lanczos_eigenvector ( &lanczos_wksp, &i, &i, newToOld,
                        evec, &nrow, &retc ) ;
   hdslp5_ ( "computed eigenvector returned by hdserc",
             &neig, evec, &output, 39L ) ;
}
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get and print eigenvectors ", t2 - t1) ;
*/
/*
   ------------------------
   free the working storage
   ------------------------
*/
MARKTIME(t1) ;
lanczos_free( &lanczos_wksp ) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : free lanczos workspace ", t2 - t1) ;
MARKTIME(t1) ;
rc = Cleanup(&bridge) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : free solver workspace ", t2 - t1) ;
if ( rc != 1 ) {
   fprintf(stderr, "\n error return %d from Cleanup()", rc) ;
   exit(-1) ;
}
fprintf(msgFile, "\n") ;
fclose(msgFile) ;

return ; }