File: Solve.c

package info (click to toggle)
spooles 2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,012 kB
  • sloc: ansic: 146,834; csh: 3,615; makefile: 2,040; perl: 74
file content (143 lines) | stat: -rw-r--r-- 3,629 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*  Solve.c  */

#include "../Bridge.h"

#define MYDEBUG 1

#if MYDEBUG > 0
static int count_Solve = 0 ;
static double time_Solve = 0.0 ;
#endif

/*--------------------------------------------------------------------*/
/*
   ----------------------------------------------
   purpose -- to solve a linear system
     (A - sigma*B) sol[] = rhs[]

   data    -- pointer to bridge data object
   *pnrows -- # of rows in x[] and y[]
   *pncols -- # of columns in x[] and y[]
   rhs[]   -- vector that holds right hand sides
   sol[]   -- vector to hold solutions

   note: rhs[] and sol[] can be the same array.
  
   on return, *perror holds an error code.
      1 -- normal return
     -1 -- pnrows is NULL
     -2 -- pncols is NULL
     -3 -- rhs is NULL
     -4 -- sol is NULL
     -5 -- data is NULL

   created -- 98aug10, cca & jcp
   ----------------------------------------------
*/
void 
Solve ( 
   int       *pnrows, 
   int       *pncols, 
   double    rhs[], 
   double    sol[],
   void      *data, 
   int       *perror 
) {
Bridge     *bridge = (Bridge *) data ;
DenseMtx   *rhsmtx, *solmtx ;
double     cpus[10] ;
int        nent, ncols, nrows ;
#if MYDEBUG > 0
double   t1, t2 ;
MARKTIME(t1) ;
count_Solve++ ;
fprintf(stdout, "\n (%d) Solve()", count_Solve) ;
fflush(stdout) ;
#endif
/*
   ---------------
   check the input
   ---------------
*/
if ( perror == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n perror == NULL\n") ;
   return ;
}
if ( pnrows == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n pnrows == NULL\n") ;
   *perror = -1 ; return ;
}
if ( pncols == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n pncols == NULL\n") ;
   *perror = -2 ; return ;
}
if ( rhs == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n rhs == NULL\n") ;
   *perror = -3 ; return ;
}
if ( sol == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n sol == NULL\n") ;
   *perror = -4 ; return ;
}
if ( data == NULL ) {
   fprintf(stderr, "\n error in Solve()"
           "\n data == NULL\n") ;
   *perror = -5 ; return ;
}
/*
   ----------------------------------
   set the number of rows and columns
   ----------------------------------
*/
nrows = *pnrows ;
ncols = *pncols ;
nent  = nrows*ncols ;
/*
   -------------------------------------------
   setup rhsmtx and solmtx as DenseMtx objects
   ------------------------------------------
*/
rhsmtx = bridge->Y ;
DenseMtx_init(rhsmtx, SPOOLES_REAL, 0, 0, nrows, ncols, 1, nrows) ;
DVcopy (nent, DenseMtx_entries(rhsmtx), rhs) ;
solmtx = bridge->X ;
DenseMtx_init(solmtx, SPOOLES_REAL, 0, 0, nrows, ncols, 1, nrows) ;
DenseMtx_zero(solmtx) ;
/*
   -----------------------
   solve the linear system
   -----------------------
*/
DVzero(10, cpus) ;
FrontMtx_solve(bridge->frontmtx, solmtx, rhsmtx, bridge->mtxmanager,
               cpus, bridge->msglvl, bridge->msgFile) ;
/*
   -----------------------------------
   copy solution into output parameter
   -----------------------------------
*/
DVcopy(nent, sol, DenseMtx_entries(solmtx)) ;
/*
   ------------------------------------------------------------------
   set the error. (this is simple since when the spooles codes detect
   a fatal error, they print out a message to stderr and exit.)
   ------------------------------------------------------------------
*/
*perror = 0 ;

#if MYDEBUG > 0
MARKTIME(t2) ;
time_Solve += t2 - t1 ;
fprintf(stdout, ", %8.3f seconds, %8.3f total time", 
        t2 - t1, time_Solve) ;
fflush(stdout) ;
#endif
 
return ; }

/*--------------------------------------------------------------------*/