1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
|
/* testFactor.c */
#include "../FrontMtx.h"
#include "../../Drand.h"
#include "../../SymbFac.h"
#include "../../timings.h"
#include "../../misc.h"
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] )
/*
-----------------------------------------------------
test the factor method for a grid matrix
(1) read in an InpMtx object
(2) read in an ETree object
(3) create a solution matrix object
(4) multiply the solution with the matrix
to get a right hand side matrix object
(5) factor the matrix
(6) solve the system
created -- 98sep05, cca
-----------------------------------------------------
*/
{
char *etreeFileName, *mtxFileName ;
Chv *chv, *rootchv ;
ChvManager *chvmanager ;
DenseMtx *mtxB, *mtxX, *mtxZ ;
double one[2] = { 1.0, 0.0 } ;
FrontMtx *frontmtx ;
InpMtx *mtxA ;
SubMtxManager *mtxmanager ;
double cputotal, droptol, factorops ;
double cpus[9] ;
Drand drand ;
double nops, tau, t1, t2 ;
ETree *frontETree ;
FILE *msgFile ;
int error, loc, lockflag, msglvl, neqns, nrhs, nzf,
pivotingflag, rc, seed, sparsityflag, symmetryflag,
type ;
int stats[6] ;
IV *newToOldIV, *oldToNewIV ;
IVL *symbfacIVL ;
if ( argc != 13 ) {
fprintf(stdout,
"\n\n usage : %s msglvl msgFile mtxFile etreeFile"
"\n seed symmetryflag sparsityflag "
"\n pivotingflag tau droptol lockflag nrhs"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n mtxFile -- file to read in InpMtx matrix object"
"\n etreeFile -- file to read in ETree front tree object"
"\n seed -- random number seed"
"\n symmetryflag -- symmetry flag"
"\n 0 --> symmetric "
"\n 1 --> hermitian"
"\n 2 --> nonsymmetric"
"\n sparsityflag -- sparsity flag"
"\n 0 --> store dense fronts"
"\n 1 --> store sparse fronts, use droptol to drop entries"
"\n pivotingflag -- pivoting flag"
"\n 0 --> do not pivot"
"\n 1 --> enable pivoting"
"\n tau -- upper bound on factor entries"
"\n used only with pivoting"
"\n droptol -- lower bound on factor entries"
"\n used only with sparse fronts"
"\n lockflag -- flag to specify lock status"
"\n 0 --> mutex lock is not allocated or initialized"
"\n 1 --> mutex lock is allocated and it can synchronize"
"\n only threads in this process."
"\n 2 --> mutex lock is allocated and it can synchronize"
"\n only threads in this and other processes."
"\n nrhs -- # of right hand sides"
"\n", argv[0]) ;
return(-1) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;
}
mtxFileName = argv[3] ;
etreeFileName = argv[4] ;
seed = atoi(argv[5]) ;
symmetryflag = atoi(argv[6]) ;
sparsityflag = atoi(argv[7]) ;
pivotingflag = atoi(argv[8]) ;
tau = atof(argv[9]) ;
droptol = atof(argv[10]) ;
lockflag = atoi(argv[11]) ;
nrhs = atoi(argv[12]) ;
fprintf(msgFile,
"\n %s "
"\n msglvl -- %d"
"\n msgFile -- %s"
"\n mtxFileName -- %s"
"\n etreeFileName -- %s"
"\n seed -- %d"
"\n symmetryflag -- %d"
"\n sparsityflag -- %d"
"\n pivotingflag -- %d"
"\n tau -- %e"
"\n droptol -- %e"
"\n lockflag -- %d"
"\n nrhs -- %d"
"\n",
argv[0], msglvl, argv[2], mtxFileName, etreeFileName,
seed, symmetryflag, sparsityflag, pivotingflag,
tau, droptol, lockflag, nrhs) ;
fflush(msgFile) ;
/*
--------------------------------------
initialize the random number generator
--------------------------------------
*/
Drand_setDefaultFields(&drand) ;
Drand_init(&drand) ;
Drand_setSeed(&drand, seed) ;
/*
Drand_setUniform(&drand, 0.0, 1.0) ;
*/
Drand_setNormal(&drand, 0.0, 1.0) ;
/*
-------------------------
read in the InpMtx object
-------------------------
*/
if ( strcmp(mtxFileName, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
mtxA = InpMtx_new() ;
MARKTIME(t1) ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in mtxA from file %s",
t2 - t1, mtxFileName) ;
if ( rc != 1 ) {
fprintf(msgFile,
"\n return value %d from InpMtx_readFromFile(%p,%s)",
rc, mtxA, mtxFileName) ;
exit(-1) ;
}
type = mtxA->inputMode ;
neqns = 1 + IVmax(mtxA->nent, InpMtx_ivec1(mtxA), &loc) ;
if ( INPMTX_IS_BY_ROWS(mtxA) ) {
fprintf(msgFile, "\n matrix coordinate type is rows") ;
} else if ( INPMTX_IS_BY_COLUMNS(mtxA) ) {
fprintf(msgFile, "\n matrix coordinate type is columns") ;
} else if ( INPMTX_IS_BY_CHEVRONS(mtxA) ) {
fprintf(msgFile, "\n matrix coordinate type is chevrons") ;
} else {
fprintf(msgFile, "\n\n, error, bad coordinate type") ;
exit(-1) ;
}
if ( INPMTX_IS_RAW_DATA(mtxA) ) {
fprintf(msgFile, "\n matrix storage mode is raw data\n") ;
} else if ( INPMTX_IS_SORTED(mtxA) ) {
fprintf(msgFile, "\n matrix storage mode is sorted\n") ;
} else if ( INPMTX_IS_BY_VECTORS(mtxA) ) {
fprintf(msgFile, "\n matrix storage mode is by vectors\n") ;
} else {
fprintf(msgFile, "\n\n, error, bad storage mode") ;
exit(-1) ;
}
{
int maxcol, maxrow, mincol, minrow ;
InpMtx_range(mtxA, &mincol, &maxcol, &minrow, &maxrow) ;
fprintf(msgFile, "\n range of entries = [%d, %d] x [%d,%d]",
minrow, maxrow, mincol, maxcol) ;
}
/*
{
int nent = InpMtx_nent(mtxA) ;
double *dvec = InpMtx_dvec(mtxA) ;
Drand *drand ;
drand = Drand_new() ;
Drand_setUniform(drand, 0., 1.) ;
Drand_fillDvector(drand, nent, dvec) ;
}
*/
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n after reading InpMtx object from file %s",
mtxFileName) ;
if ( msglvl == 2 ) {
InpMtx_writeStats(mtxA, msgFile) ;
} else {
InpMtx_writeForHumanEye(mtxA, msgFile) ;
}
fflush(msgFile) ;
}
/*
--------------------------------------------------------
generate the linear system
1. generate solution matrix and fill with random numbers
2. generate rhs matrix and fill with zeros
3. compute matrix-matrix multiply
--------------------------------------------------------
*/
MARKTIME(t1) ;
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, -1, neqns, nrhs, 1, neqns) ;
DenseMtx_fillRandomEntries(mtxX, &drand) ;
mtxB = DenseMtx_new() ;
DenseMtx_init(mtxB, type, 1, -1, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxB) ;
fprintf(msgFile, "\n B and X initialized") ;
fflush(msgFile) ;
switch ( symmetryflag ) {
case SPOOLES_SYMMETRIC :
InpMtx_sym_mmm(mtxA, mtxB, one, mtxX) ;
break ;
case SPOOLES_HERMITIAN :
InpMtx_herm_mmm(mtxA, mtxB, one, mtxX) ;
break ;
case SPOOLES_NONSYMMETRIC :
InpMtx_nonsym_mmm(mtxA, mtxB, one, mtxX) ;
break ;
default :
break ;
}
fprintf(msgFile, "\n mvm done") ;
fflush(msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : set up the solution and rhs ",
t2 - t1) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n original mtxX") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fprintf(msgFile, "\n\n original mtxB") ;
DenseMtx_writeForHumanEye(mtxB, msgFile) ;
fflush(msgFile) ;
}
DenseMtx_writeToFile(mtxB, "rhs.densemtxb") ;
/*
InpMtx_writeForMatlab(mtxA, "A", msgFile) ;
DenseMtx_writeForMatlab(mtxX, "X", msgFile) ;
DenseMtx_writeForMatlab(mtxB, "B", msgFile) ;
*/
/*
------------------------
read in the ETree object
------------------------
*/
if ( strcmp(etreeFileName, "none") == 0 ) {
fprintf(msgFile, "\n no file to read from") ;
exit(0) ;
}
frontETree = ETree_new() ;
MARKTIME(t1) ;
rc = ETree_readFromFile(frontETree, etreeFileName) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : read in frontETree from file %s",
t2 - t1, etreeFileName) ;
if ( rc != 1 ) {
fprintf(msgFile, "\n return value %d from ETree_readFromFile(%p,%s)",
rc, frontETree, etreeFileName) ;
exit(-1) ;
}
ETree_leftJustify(frontETree) ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n after reading ETree object from file %s",
etreeFileName) ;
if ( msglvl == 2 ) {
ETree_writeStats(frontETree, msgFile) ;
} else {
ETree_writeForHumanEye(frontETree, msgFile) ;
}
}
fflush(msgFile) ;
/*
--------------------------------------------------
get the permutations, permute the matrix and the
front tree, and compute the symbolic factorization
--------------------------------------------------
*/
MARKTIME(t1) ;
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : get permutations", t2 - t1) ;
MARKTIME(t1) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute front tree", t2 - t1) ;
MARKTIME(t1) ;
InpMtx_permute(mtxA, IV_entries(oldToNewIV), IV_entries(oldToNewIV)) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute mtxA", t2 - t1) ;
if ( symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN ) {
MARKTIME(t1) ;
InpMtx_mapToUpperTriangle(mtxA) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : map to upper triangle", t2 - t1) ;
}
if ( ! INPMTX_IS_BY_CHEVRONS(mtxA) ) {
MARKTIME(t1) ;
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : change coordinate type", t2 - t1) ;
}
if ( INPMTX_IS_RAW_DATA(mtxA) ) {
MARKTIME(t1) ;
InpMtx_changeStorageMode(mtxA, INPMTX_SORTED) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : sort entries ", t2 - t1) ;
}
if ( INPMTX_IS_SORTED(mtxA) ) {
MARKTIME(t1) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : convert to vectors ", t2 - t1) ;
}
MARKTIME(t1) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : symbolic factorization", t2 - t1) ;
MARKTIME(t1) ;
DenseMtx_permuteRows(mtxB, oldToNewIV) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute rhs", t2 - t1) ;
/*
DenseMtx_writeForMatlab(mtxB, "Bhat", msgFile) ;
*/
/*
------------------------------
initialize the FrontMtx object
------------------------------
*/
MARKTIME(t1) ;
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, lockflag, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL,
type, symmetryflag, sparsityflag, pivotingflag,
lockflag, 0, NULL, mtxmanager, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : initialize the front matrix",
t2 - t1) ;
if ( msglvl > 1 ) {
fprintf(msgFile,
"\n nendD = %d, nentL = %d, nentU = %d",
frontmtx->nentD, frontmtx->nentL, frontmtx->nentU) ;
}
if ( msglvl > 2 ) {
fprintf(msgFile, "\n front matrix initialized") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
/*
-----------------
factor the matrix
-----------------
*/
nzf = ETree_nFactorEntries(frontETree, symmetryflag) ;
factorops = ETree_nFactorOps(frontETree, type, symmetryflag) ;
fprintf(msgFile,
"\n %d factor entries, %.0f factor ops, %8.3f ratio",
nzf, factorops, factorops/nzf) ;
IVzero(6, stats) ;
DVzero(9, cpus) ;
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, lockflag, 1) ;
MARKTIME(t1) ;
rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, &error, cpus,
stats, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : factor matrix, %8.3f mflops",
t2 - t1, 1.e-6*factorops/(t2-t1)) ;
if ( rootchv != NULL ) {
fprintf(msgFile, "\n\n factorization did not complete") ;
for ( chv = rootchv ; chv != NULL ; chv = chv->next ) {
fprintf(stdout, "\n chv %d, nD = %d, nL = %d, nU = %d",
chv->id, chv->nD, chv->nL, chv->nU) ;
}
}
if ( error >= 0 ) {
fprintf(msgFile, "\n\n error encountered at front %d\n", error) ;
exit(-1) ;
}
fprintf(msgFile,
"\n %8d pivots, %8d pivot tests, %8d delayed rows and columns",
stats[0], stats[1], stats[2]) ;
if ( frontmtx->rowadjIVL != NULL ) {
fprintf(msgFile,
"\n %d entries in rowadjIVL", frontmtx->rowadjIVL->tsize) ;
}
if ( frontmtx->coladjIVL != NULL ) {
fprintf(msgFile,
", %d entries in coladjIVL", frontmtx->coladjIVL->tsize) ;
}
if ( frontmtx->upperblockIVL != NULL ) {
fprintf(msgFile,
"\n %d fronts, %d entries in upperblockIVL",
frontmtx->nfront, frontmtx->upperblockIVL->tsize) ;
}
if ( frontmtx->lowerblockIVL != NULL ) {
fprintf(msgFile,
", %d entries in lowerblockIVL",
frontmtx->lowerblockIVL->tsize) ;
}
fprintf(msgFile,
"\n %d entries in D, %d entries in L, %d entries in U",
stats[3], stats[4], stats[5]) ;
fprintf(msgFile, "\n %d locks", frontmtx->nlocks) ;
if ( FRONTMTX_IS_SYMMETRIC(frontmtx)
|| FRONTMTX_IS_HERMITIAN(frontmtx) ) {
int nneg, npos, nzero ;
FrontMtx_inertia(frontmtx, &nneg, &nzero, &npos) ;
fprintf(msgFile,
"\n %d negative, %d zero and %d positive eigenvalues",
nneg, nzero, npos) ;
fflush(msgFile) ;
}
cputotal = cpus[8] ;
if ( cputotal > 0.0 ) {
fprintf(msgFile,
"\n initialize fronts %8.3f %6.2f"
"\n load original entries %8.3f %6.2f"
"\n update fronts %8.3f %6.2f"
"\n assemble postponed data %8.3f %6.2f"
"\n factor fronts %8.3f %6.2f"
"\n extract postponed data %8.3f %6.2f"
"\n store factor entries %8.3f %6.2f"
"\n miscellaneous %8.3f %6.2f"
"\n total time %8.3f",
cpus[0], 100.*cpus[0]/cputotal,
cpus[1], 100.*cpus[1]/cputotal,
cpus[2], 100.*cpus[2]/cputotal,
cpus[3], 100.*cpus[3]/cputotal,
cpus[4], 100.*cpus[4]/cputotal,
cpus[5], 100.*cpus[5]/cputotal,
cpus[6], 100.*cpus[6]/cputotal,
cpus[7], 100.*cpus[7]/cputotal, cputotal) ;
}
SubMtxManager_writeForHumanEye(mtxmanager, msgFile) ;
ChvManager_writeForHumanEye(chvmanager, msgFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n front factor matrix") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
/*
fprintf(msgFile, "\n L = eye(%d,%d) ;", neqns, neqns) ;
fprintf(msgFile, "\n U = eye(%d,%d) ;", neqns, neqns) ;
fprintf(msgFile, "\n D = zeros(%d,%d) ;", neqns, neqns) ;
FrontMtx_writeForMatlab(frontmtx, "L", "D", "U", msgFile) ;
*/
/*
------------------------------
post-process the factor matrix
------------------------------
*/
MARKTIME(t1) ;
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : post-process the matrix", t2 - t1) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n front factor matrix after post-processing") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
}
fprintf(msgFile, "\n\n after post-processing") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
----------------
solve the system
----------------
*/
neqns = mtxB->nrow ;
nrhs = mtxB->ncol ;
mtxZ = DenseMtx_new() ;
DenseMtx_init(mtxZ, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxZ) ;
if ( type == SPOOLES_REAL ) {
nops = frontmtx->nentD + 2*frontmtx->nentU ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
nops += 2*frontmtx->nentL ;
} else {
nops += 2*frontmtx->nentU ;
}
} else if ( type == SPOOLES_COMPLEX ) {
nops = 8*frontmtx->nentD + 8*frontmtx->nentU ;
if ( FRONTMTX_IS_NONSYMMETRIC(frontmtx) ) {
nops += 8*frontmtx->nentL ;
} else {
nops += 8*frontmtx->nentU ;
}
}
nops *= nrhs ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs") ;
DenseMtx_writeForHumanEye(mtxB, msgFile) ;
fflush(stdout) ;
}
DVzero(6, cpus) ;
MARKTIME(t1) ;
FrontMtx_solve(frontmtx, mtxZ, mtxB, mtxmanager,
cpus, msglvl, msgFile) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n\n CPU %8.3f : solve the system, %.3f mflops",
t2 - t1, 1.e-6*nops/(t2 - t1)) ;
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
fprintf(msgFile,
"\n set up solves %8.3f %6.2f"
"\n load rhs and store solution %8.3f %6.2f"
"\n forward solve %8.3f %6.2f"
"\n diagonal solve %8.3f %6.2f"
"\n backward solve %8.3f %6.2f"
"\n total time %8.3f",
cpus[0], 100.*cpus[0]/cputotal,
cpus[1], 100.*cpus[1]/cputotal,
cpus[2], 100.*cpus[2]/cputotal,
cpus[3], 100.*cpus[3]/cputotal,
cpus[4], 100.*cpus[4]/cputotal, cputotal) ;
}
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n computed solution") ;
DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
fflush(stdout) ;
}
/*
DenseMtx_writeForMatlab(mtxZ, "Xhat", msgFile) ;
*/
/*
-------------------------------------------------------------
permute the computed solution back into the original ordering
-------------------------------------------------------------
*/
MARKTIME(t1) ;
DenseMtx_permuteRows(mtxZ, newToOldIV) ;
MARKTIME(t2) ;
fprintf(msgFile, "\n CPU %8.3f : permute solution", t2 - t1) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n permuted solution") ;
DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
fflush(stdout) ;
}
/*
-----------------
compute the error
-----------------
*/
DenseMtx_sub(mtxZ, mtxX) ;
fprintf(msgFile, "\n\n maxabs error = %12.4e", DenseMtx_maxabs(mtxZ)) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n error") ;
DenseMtx_writeForHumanEye(mtxZ, msgFile) ;
fflush(stdout) ;
}
fprintf(msgFile, "\n\n after solve") ;
SubMtxManager_writeForHumanEye(frontmtx->manager, msgFile) ;
/*
------------------------
free the working storage
------------------------
*/
IV_free(oldToNewIV) ;
IV_free(newToOldIV) ;
InpMtx_free(mtxA) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxB) ;
DenseMtx_free(mtxZ) ;
FrontMtx_free(frontmtx) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
ChvManager_free(chvmanager) ;
SubMtxManager_free(mtxmanager) ;
fprintf(msgFile, "\n") ;
fclose(msgFile) ;
return(1) ; }
/*--------------------------------------------------------------------*/
|