1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
\par
\section{Prototypes and descriptions of {\tt Graph} methods}
\label{section:Graph:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt Graph} object.
\par
\subsection{Basic methods}
\label{subsection:Graph:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Graph * Graph_new ( void ) ;
\end{verbatim}
\index{Graph_new@{\tt Graph\_new()}}
This method simply allocates storage for the {\tt Graph} structure
and then sets the default fields by a call to
{\tt Graph\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_setDefaultFields ( Graph *graph ) ;
\end{verbatim}
\index{Graph_setDefaultFields@{\tt Graph\_setDefaultFields()}}
This method sets the structure's fields to default values:
{\tt type}, {\tt nvtx}, {\tt nvbnd}, {\tt nedges}, {\tt totwght} and
{\tt totewght} are all zero, and {\tt adjIVL}, {\tt vwghts} and
{\tt ewghtIVL} are all {\tt NULL}.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_clearData ( Graph *graph ) ;
\end{verbatim}
\index{Graph_clearData@{\tt Graph\_clearData()}}
This method clears the data for the object.
If {\tt adjIVL} is not {\tt NULL},
then {\tt IVL\_free(adjIVL)} is called to free the {\tt IVL}
object.
If {\tt ewghtIVL} is not {\tt NULL},
then {\tt IVL\_free(ewghtIVL)} is called to free the {\tt IVL}
object.
If {\tt vwghts} is not {\tt NULL},
then {\tt IVfree(vwghts)} is called to free the {\tt int}
vector.
The structure's fields are then set to their default values
with a call to {\tt Graph\_setDefaultFields()}.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_free ( Graph *graph ) ;
\end{verbatim}
\index{Graph_free@{\tt Graph\_free()}}
This method releases any storage by a call to
{\tt Graph\_clearData()} then free's the storage for the
structure with a call to {\tt free()}.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Initializer methods}
\label{subsection:Graph:proto:initializers}
\par
There are three initializer methods.
The first is most commonly used, the second is used within the IO
routines, and the third is used to create a {\tt Graph} object from
the {\tt offsets[]/adjncy[]} format for the adjacency structure.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_init1 ( Graph *graph, int type, int nvtx, int nvbnd, int nedges,
int adjType, int ewghtType ) ;
\end{verbatim}
\index{Graph_init1@{\tt Graph\_init1()}}
This is the basic initializer method.
Any previous data is cleared with a call to {\tt Graph\_clearData()}.
Then the scalar fields are set and the {\tt adjIVL} object is
initialized.
If {\tt type} is {\tt 1} or {\tt 3}, the {\tt vwghts} vector is
initialized to zeros.
If {\tt type} is {\tt 2} or {\tt 3}, the {\tt ewghtIVL} object
is initialized.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
{\tt type} is invalid ({\tt type} must be in {\tt [0,3]}),
{\tt nvtx} is non-positive,
{\tt nvbnd} or {\tt nedges} is negative, or
{\tt adjType} of {\tt ewghtType} is invalid (they must be
{\tt IVL\_CHUNKED},
{\tt IVL\_SOLO} or
{\tt IVL\_UNKNOWN}).
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_init2 ( Graph *graph, int type, int nvtx, int nvbnd, int nedges,
int totvwght, int totewght, IVL *adjIVL, int *vwghts, IVL *ewghtIVL)
\end{verbatim}
\index{Graph_init2@{\tt Graph\_init2()}}
This method is used by the IO read methods.
When a {\tt Graph} object is read from a file, the {\tt IVL}
object(s) must be initialized and then read in from the file.
Therefore, we need an initialization method that allows us to set
pointers to the {\tt IVL} objects and the {\tt vwghts} vector.
Note, {\tt adjIVL}, {\tt vwghts} and {\tt ewghtIVL} are owned by
the {\tt Graph} object and will be free'd when the {\tt Graph}
object is free'd.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt adjIVL} is {\tt NULL},
{\tt type} is invalid ({\tt type} must be in {\tt [0,3]}),
{\tt nvtx} is non-positive,
{\tt nvbnd} or {\tt nedges} is negative,
or if {\tt type \% 2 = 1} and {\tt vwghts} is {\tt NULL},
or if ${\tt type} \ge 2$ and {\tt ewghtIVL} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_fillFromOffsets ( Graph *graph, int neqns, int offsets[],
int adjncy[], int flag )
\end{verbatim}
\index{Graph_fillFromOffsets@{\tt Graph\_fillFromOffsets()}}
This method initializes the {\tt Graph} object using an adjacency
structure, as is the storage format for a Harwell-Boeing matrix.
The entries in list {\tt v} are found in {\tt adjncy[i1:i2]}, where
{\tt i1 = offsets[v]} and {\tt i2 = offsets[v+1]-1}.
The {\tt offsets[]} and {\tt adjncy[]} arrays are assumed to be
zero-based (as are C-arrays), not one-based (as are Fortran arrays).
If {\tt flag == 0} then the lists are simply loaded
into the {\tt Graph} object.
If {\tt flag == 1}, the adjacency structure must be upper, meaning
that the list for {\tt v} contains entries that are greater than or
equal to {\tt v}.
The {\tt Graph} will have a full adjacency
structure, including the {\tt (v,v)} edges.
\par \noindent {\it Error checking:}
If {\tt graph}, {\tt offsets} or {\tt adjncy} is {\tt NULL},
or if ${\tt neqns} \le 0$,
or if ${\tt flag} < 0$ or if ${\tt flag} > 1$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_setListsFromOffsets ( Graph *graph, int neqns,
int offsets[], int adjncy[] ) ;
\end{verbatim}
\index{Graph_setListsFromOffsets@{\tt Graph\_setListsFromOffsets()}}
This method initializes the {\tt Graph} object using a {\it full}
adjacency structure.
The entries in list {\tt v} are found in {\tt adjncy[i1:i2]}, where
{\tt i1 = offsets[v]} and {\tt i2 = offsets[v+1]-1}.
The {\tt offsets[]} and {\tt adjncy[]} arrays are assumed to be
zero-based (as are C-arrays), not one-based (as are Fortran arrays).
Use this method with caution --- the adjacency list for vertex
{\tt v} must contain {\tt v} and {\it all} vertices it is adjacent to.
Note, new storage for the adjacency lists is not allocated, the
{\tt Graph} object's {\tt IVL} object points into the storage
in {\tt adjncy[]}.
\par \noindent {\it Error checking:}
If {\tt graph}, {\tt offsets} or {\tt adjncy} is {\tt NULL},
or if ${\tt neqns} \le 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Compress and Expand methods}
\label{subsection:Graph:proto:compress}
\par
These three methods find an equivalence map for the natural
compressed graph, compress a graph, and expand a graph.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Graph_equivMap ( Graph *graph ) ;
\end{verbatim}
\index{Graph_equivMap@{\tt Graph\_equivMap()}}
This method constructs the equivalence map from the graph to its
natural compressed graph.
The map $\phi : V \mapsto {\bf V}$ is then constructed
(see the Introduction in this section)
and put into an {\tt IV} object that is then returned.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL} or {\tt nvtx <= 0},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Graph * Graph_compress ( Graph *graph, int map[], int coarseType ) ;
Graph * Graph_compress2 ( Graph *graph, IV *mapIV, int coarseType ) ;
\end{verbatim}
\index{Graph_compress@{\tt Graph\_compress()}}
\index{Graph_compress2@{\tt Graph\_compress2()}}
This {\tt Graph} and map objects ({\tt map[]} or {\tt mapIV}) are
checked and if any errors are found, the appropriate message is
printed and the program exits.
The compressed graph object is constructed and returned.
Note, the compressed graph does not have a boundary, even though
the original graph may have one.
\par \noindent {\it Error checking:}
If {\tt graph}, {\tt map} or {\tt mapIV} is {\tt NULL},
or if ${\tt nvtx} \le 0$,
or if ${\tt coarseType} < 0$,
or if $ 3 < {\tt coarseType}$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Graph * Graph_expand ( Graph *graph, int nvtxbig, int map[] ) ;
Graph * Graph_expand2 ( Graph *graph, IV *mapIV ) ;
\end{verbatim}
\index{Graph_expand@{\tt Graph\_expand()}}
\index{Graph_expand2@{\tt Graph\_expand2()}}
This {\tt Graph} and map objects ({\tt map[]} or {\tt mapIV}) are
checked and if any errors are found, the appropriate message is
printed and the program exits.
The expanded unit weight graph object is constructed and returned.
\par \noindent {\it Error checking:}
If {\tt graph}, {\tt map} or {\tt mapIV} is {\tt NULL},
or if ${\tt nvtxbig} \le 0$,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Wirebasket domain decomposition ordering}
\label{subsection:Graph:proto:wirebasket}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_wirebasketStages ( Graph *graph, IV *stagesIV, int radius ) ;
\end{verbatim}
\index{Graph_wirebasketStages@{\tt Graph\_wirebasketStages()}}
This method is used to group the vertices into stages that is
suitable for a wirebasket domain decomposition of a general graph.
On input, {\tt stages[v] = 0} means that {\tt v} is in a domain.
On output, {\tt stages[v]} contains the stage of elimination ---
zero is for all vertices in the domains.
If {\tt stages[v] > 0}, then it is the number of domains that
are found within {\tt radius} edges of {\tt v}.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt stagesIV} is {\tt NULL},
or if {\tt radius < 0},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Utility methods}
\label{subsection:Graph:proto:utilities}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_sizeOf ( Graph *graph ) ;
\end{verbatim}
\index{Graph_sizeOf@{\tt Graph\_sizeOf()}}
This method returns the number of bytes taken by this object.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Graph_externalDegree ( Graph *graph, int v ) ;
\end{verbatim}
\index{Graph_externalDegree@{\tt Graph\_externalDegree()}}
This method returns the weight of $\mbox{adj}(\mbox{\tt v})$.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
or {\tt v} is out of range,
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_adjAndSize ( Graph *graph, int u, int *pusize, int **puadj) ;
\end{verbatim}
\index{Graph_adjAndSize@{\tt Graph\_adjAndSize()}}
This method fills {\tt *pusize} with the size of the adjacency
list for {\tt u}
and {\tt *puadj} points to the start of the list vector.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
or if {\tt u < 0} or {\tt u >= nvtx}
or if {\tt pusize} or {\tt puadj} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_adjAndEweights ( Graph *graph, int u, int *pusize,
int **puadj, int **puewghts) ;
\end{verbatim}
\index{Graph_adjAndEweights@{\tt Graph\_adjAndEweights()}}
This method fills {\tt *psize} with the size of the adjacency
list, {\tt *puadj} points to the start of the list vector
and {\tt *puewghts} points to the start of the edge weights vector.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
or if {\tt u < 0} or {\tt u >= nvtx}
or if {\tt pusize}, {\tt puadj} or {\tt puewghts} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
IV * Graph_componentMap ( Graph *graph ) ;
\end{verbatim}
\index{Graph_componentMap@{\tt Graph\_componentMap()}}
This method computes and returns an IV object that holds a
map from vertices to components.
The values of the map vector are in the range
{\tt [0, number of components)}.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL} then
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
void Graph_componentStats ( Graph *graph, int map[],
int counts[], int weights[] ) ;
\end{verbatim}
\index{Graph_componentStats@{\tt Graph\_componentStats()}}
This method computes some statistics about the components.
The length of {\tt map} is {\tt nvtx}.
The number of components is {\tt 1 + max(map)},
and the length of {\tt counts[]} and {\tt weights[]} must be as
large as the number of components.
On return, {\tt counts[icomp]} and {\tt weights[icomp]} are filled
with the number of vertices and weight of the vertices in component
{\tt icomp}, respectively.
\par \noindent {\it Error checking:}
If {\tt graph}, {\tt map}, {\tt counts} or {\tt weights}
is {\tt NULL}, then
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
Graph * Graph_subGraph ( Graph *graph, int icomp, int compids[], int **pmap ) ;
\end{verbatim}
\index{Graph_subGraph@{\tt Graph\_subGraph()}}
This method is used by the graph partitioning methods.
For a graph $G(V,E)$, a vertex separator $S \subset V$ is found
which separates the subgraph induced by $V \setminus S$
into two or more connected components.
We construct a new graph object for each component using this method.
The {\tt compids[]} vector maps the internal vertices
of the parent graph into components.
This method extracts the subgraph associated with component {\tt
icomp}.
\par
There is one key design feature.
{\it Most of the storage for the adjacency lists of the subgraph is
the same as its parent graph.}
This keeps us from replicating too much storage.
The subgraph has internal vertices and boundary vertices
(the latter contain at least part of $S$.)
Each adjacency list for an internal vertex of the subgraph points
to the corresponding adjacency list for the vertex in the parent graph.
Each adjacency list for a boundary vertex of the subgraph is new
storage, and only these lists are free'd when the subgraph is free'd.
A map vector is created that maps the subgraphs's vertices (both
internal and boundary) into the parent graph's vertices; the
address of the map vector is put into {\tt *pmap}.
The adjacency lists for the subgraph are overwritten by the {\tt map[]}
vector.
This renders the graph object invalid.
The graph partitioning methods map the vertices back to their
original values.
Presently, only graphs with unit edge weights are allowed as input.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL} or {\tt icomp < 0}
or {\tt compids} or {\tt pmap} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_isSymmetric ( Graph *graph ) ;
\end{verbatim}
\index{Graph_isSymmetric@{\tt Graph\_isSymmetric()}}
This method returns {\tt 1}
if the graph is symmetric (i.e., edge {\tt (i,j)} is
present if and only if edge {\tt (j,i)} is present) and {\tt 0}
otherwise.
\par \noindent {\it Error checking:}
If {\tt graph} is {\tt NULL},
an error message is printed and the program exits.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{IO methods}
\label{subsection:Graph:proto:IO}
\par
There are the usual eight IO routines.
The file structure of a {\tt Graph} object is simple:
The six scalar fields come first:
{\tt type},
{\tt nvtx},
{\tt nvbnd},
{\tt nedges},
{\tt totvwght} and
{\tt totewght}.
The adjacency {\tt IVL} structure {\tt adjIVL} follows.
If the graph has non-unit vertex weights, i.e., {\tt type \% 2 == 1},
the {\tt vwghts} vector follows.
If the graph has non-unit edge weights, i.e., {\tt type / 2 == 1},
the {\tt IVL} structure {\tt ewghtIVL} follows.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_readFromFile ( Graph *graph, char *fn ) ;
\end{verbatim}
\index{Graph_readFromFile@{\tt Graph\_readFromFile()}}
\par
This method reads a {\tt Graph object} from a file.
It tries to open the file and if it is successful,
it then calls {\tt Graph\_readFromFormattedFile()} or
{\tt Graph\_readFromBinaryFile()},
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fn} are {\tt NULL},
or if {\tt fn} is not of the form
{\tt *.graphf} (for a formatted file)
or {\tt *.graphb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_readFromFormattedFile ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_readFromFormattedFile@{\tt Graph\_readFromFormattedFile()}}
\par
This method reads a {\tt Graph} object from a formatted file.
If there are no errors in reading the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fscanf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL}
an error message is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_readFromBinaryFile ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_readFromBinaryFile@{\tt Graph\_readFromBinaryFile()}}
This method reads a {\tt Graph} object from a binary file.
If there are no errors in reading the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fread}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeToFile ( Graph *graph, char *fn ) ;
\end{verbatim}
\index{Graph_writeToFile@{\tt Graph\_writeToFile()}}
\par
This method writes a {\tt Graph object} to a file.
It tries to open the file and if it is successful,
it then calls {\tt Graph\_writeFromFormattedFile()} or
{\tt Graph\_writeFromBinaryFile()},
closes the file
and returns the value returned from the called routine.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fn} are {\tt NULL},
or if {\tt fn} is not of the form
{\tt *.graphf} (for a formatted file)
or {\tt *.graphb} (for a binary file),
an error message is printed and the method returns zero.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeToFormattedFile ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_writeToFormattedFile@{\tt Graph\_writeToFormattedFile()}}
\par
This method writes a {\tt Graph} object to a formatted file.
If there are no errors in writing the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fprintf}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeToBinaryFile ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_writeToBinaryFile@{\tt Graph\_writeToBinaryFile()}}
\par
This method writes a {\tt Graph} object to a binary file.
If there are no errors in writing the data,
the value {\tt 1} is returned.
If an IO error is encountered from {\tt fwrite}, zero is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeForHumanEye ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_writeForHumanEye@{\tt Graph\_writeForHumanEye()}}
\par
This method writes a {\tt Graph} object to a file in a human
readable format.
The method {\tt Graph\_writeStats()} is called to write out the
header and statistics.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeStats ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_writeStats@{\tt Graph\_writeStats()}}
\par
The header and statistics are written to a file.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int Graph_writeToMetisFile ( Graph *graph, FILE *fp ) ;
\end{verbatim}
\index{Graph_writeToMetisFile@{\tt Graph\_writeToMetisFile()}}
\par
This method writes a {\tt Graph} object to a file in the format of
the {\bf METIS} or {\bf CHACO} packages.
The value {\tt 1} is returned.
\par \noindent {\it Error checking:}
If {\tt graph} or {\tt fp} are {\tt NULL} an error message
is printed and zero is returned.
%-----------------------------------------------------------------------
\end{enumerate}
|