File: MT.tex

package info (click to toggle)
spooles 2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,012 kB
  • sloc: ansic: 146,834; csh: 3,615; makefile: 2,040; perl: 74
file content (827 lines) | stat: -rw-r--r-- 30,059 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
\chapter{The Multithreaded Wrapper Object and Driver}
\label{section:MT}
The goal is to solve $AX = Y$ in a multithreaded environment.
Section 8 of the User's Manual presents a listing of the 
{\tt AllInOneMT.c} driver program for solving $AX =Y$.
There are ten steps, and each requires ``mid-level'' knowledge 
of several objects of the {\bf SPOOLES} library.
To reduce the complexity of using the library, 
(and the complexity rises dramatically in the MPI environments),
we created the {\tt BridgeMT} object.
The term ``bridge'' symbolizes spanning the distance between the
{\bf SPOOLES} library and the CSAR Nastran application code.
The ten steps of the {\tt allInOneMT.c} driver program is reduced to
five using the {\tt BridgeMT} object.
\begin{itemize}
\item Initialization and setup step.
\par
Here the {\tt BridgeMT} object is allocated via a call to 
{\tt BridgeMT\_new()}.
Parameters are set using {\tt BridgeMT\_set*()} methods.
The setup phase orders the matrix and prepares all the necessary 
{\bf SPOOLES} data structures for the factorization and solve 
that follow
\item Setup the numerical factorization.
\par
In this step, 
{\tt BridgeMT\_factorSetup()} is called
to define the parallelism for the factorization,
and all data structures for the parallel execution are created.
\item Factorization step.
\par
The matrix is factored via a call to {\tt BridgeMT\_factor()}.
\item Setup the numerical solves.
\par
{\tt BridgeMT\_solveSetup()} is called to set up the parallel solves.
This must be called {\it once} after a factorization,
one or more solves may follow.
\item Solution step.
\par
The linear system is solved via a call to {\tt BridgeMT\_solve()}.
\end{itemize}
\par
The {\tt BridgeMT} object has many parameters that control 
the ordering of the matrix,
the pivoting tolerance (if pivoting is requested),
the drop tolerance (for an approximate factorization),
and so on.
Rather than burden the user with the knowledge of and setting these
parameters, there are decent default values built into the object.
\par
Section~\ref{section:BridgeMT:quick-look-MT-driver} takes a quick
look at the {\tt BridgeMT} driver program (whose complete listing is
found in Appendix~\ref{chapter:MT_driver}).
Section~\ref{section:BridgeMT:dataStructure} describes the internal 
data fields of the {\tt BridgeMT} object.
Section~\ref{section:Bridge:proto} contains the prototypes and
descriptions of all {\tt Bridge} methods.
\par
\section{A quick look at the multithreaded driver program}
\label{section:BridgeMT:quick-look-MT-driver}
\par
The entire listing of this multithreaded driver is found in
Appendix~\ref{chapter:MT_driver}.
We now extract parts of the code.
\begin{itemize}
\item Decode the input.
\par
\begin{verbatim}
msglvl       = atoi(argv[1]) ;
msgFileName  = argv[6] ;
neqns        = atoi(argv[3]) ;
type         = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName  = argv[6] ;
rhsFileName  = argv[7] ;
solFileName  = argv[8] ;
seed         = atoi(argv[9]) ;
nthread      = atoi(argv[10]) ;
\end{verbatim}
Here is a description of the input parameters.

\begin{itemize}
\item {\tt msglvl} is the message level.
\item {\tt msgFile} is the message file name
\item {\tt neqns} is the number of equations.
\item {\tt type} is the type of entries:
1 ({\tt SPOOLES\_REAL}) or
2 ({\tt SPOOLES\_COMPLEX}).
\item {\tt symmetryflag} is the type of matrix symmetry:
0 ({\tt SPOOLES\_SYMMETRIC}),
1 ({\tt SPOOLES\_HERMITIAN}) or
2 ({\tt SPOOLES\_NONSYMMETRIC}).
\item {\tt mtxFile} is the name of the file from which to read the {\tt
InpMtx} object for $A$.
The file name must have the form {\tt *.inpmtxb} for a binary file or
{\tt *.inpmtxf} for a formatted file.
\item {\tt rhsFile} is the name of the file from which to read the {\tt
DenseMtx} object for the right hand side $Y$.
The file name must have the form {\tt *.densemtxb} for a binary file or
{\tt *.densemtxf} for a formatted file.
\item {\tt solFile} is the name of the file to write the {\tt
DenseMtx} object for the solution $X$.
The file name must have the form {\tt *.densemtxb} for a binary file or
{\tt *.densemtxf} for a formatted file, {\tt "none"} for no output,
or any other name for a human-readable listing.
\item {\tt seed} is a random number seed used in the ordering process.
\item {\tt nthread} is the number of threads to be used in the
factorization and solve.
\end{itemize}
%
\item Read in the {\tt InpMtx} object for $A$.
\begin{verbatim}
mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
\end{verbatim}
The {\tt rc} parameter is the error return. 
In the driver it is tested for an error, but we omit this from the
present discussion.
%
\item Read in the {\tt DenseMtx} object for $Y$.
\begin{verbatim}
mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, mtxFileName) ;
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;
\end{verbatim}
The {\tt nrhs} parameter contains the number of right hand sides,
or equivalently, the number of columns in $Y$.
%
\item Create and setup the {\tt BridgeMT} object.
\begin{verbatim}
bridge = BridgeMT_new() ;
BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ;
rc = BridgeMT_setup(bridge, mtxA) ;
\end{verbatim}
The {\tt BridgeMT} object is allocated by {\tt BridgeMT\_new()},
and various parameters are set.
The actual ordering of the matrix, symbolic factorization,
and permutation creation are performed inside the {\tt BridgeMT\_setup()}
method.
%
\item Setup the numerical factorization.
\begin{verbatim}
rc = BridgeMT_factorSetup(bridge, nthread, 0, 0.0) ;
\end{verbatim}
This step tells the \texttt{BridgeMT} object the number of threads
to be used in the factorization and solve.
The third and fourth parameters define the particular type 
of map of the computations to processors.
When the third parameter is zero, the defaults map is used.
If {\tt rc = 1}, the setup completed without any error.
%
\item Compute the matrix factorization.
\begin{verbatim}
permuteflag = 1 ;
rc = BridgeMT_factor(bridge, mtxA, permuteflag, &error) ;
\end{verbatim}
When {\tt permuteflag} is {\tt 1}, it means that the matrix in {\tt
mtxA} has not yet been permuted into the new ordering and so is
done inside the method.
The {\tt error} flag is filled with an error code that tells how far the
factorization was able to proceed.
If {\tt rc = 1}, the factorization completed without any error.
%
\item Setup the solve.
\begin{verbatim}
rc = BridgeMT_solveSetup(bridge) ;
\end{verbatim}
This method sets up the environment for a parallel solve.
If {\tt rc = 1}, the setup completed without any error.
%
\item Solve the linear system.
\begin{verbatim}
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = BridgeMT_solve(bridge, permuteflag, mtxX, mtxY) ;
\end{verbatim}
The {\tt DenseMtx} object {\tt mtxX} is created and initialized to be
the same type and size as {\tt mtxY}.
Its entries are explicitly zeroed (this is not necessary but is a good
idea in general).
The solution is then solved.
Again, note the presence of {\tt permuteflag}.
When {\tt 1}, \texttt{mtxY} needs to be permuted into the new ordering,
and \texttt{mtxX} is returned in the original ordering.
\end{itemize}
\par
\section{The \texttt{BridgeMT} Data Structure}
\label{section:BridgeMT:dataStructure}
\par
The {\tt BridgeMT} structure has the following fields.
\begin{itemize}
%
\item Graph parameters:
\begin{itemize} 
\item
{\tt int neqns} : number of equations, 
i.e., number of vertices in the graph.
\item
{\tt int nedges} : number of edges 
(includes $(u,v)$, $(v,u)$ and $(u,u)$).
\item
{\tt int Neqns} : number of equations in the compressed graph.
\item
{\tt int Nedges} : number of edges in the compressed graph.
\end{itemize}
%
\item Ordering parameters:
\begin{itemize}
\item
{\tt int maxdomainsize} : maximum size of a subgraph to not split any
further during the nested dissection process.
\item
{\tt int maxnzeros} : maximum number of zeros to allow in a front 
during the supernode amalgamation process.
\item
{\tt int maxsize} : maximum size of a front when the fronts are split.
\item
{\tt int seed} : random number seed.
\item
{\tt double compressCutoff} : if the \texttt{Neqns} $<$
\texttt{compressCutoff} $*$ \texttt{neqns}, then the compressed
graph is formed, ordered and used to create the symbolic
factorization.
\end{itemize}
%
\item Matrix parameters:
\begin{itemize}
\item
{\tt int type} : type of entries,
{\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
default value is {\tt SPOOLES\_REAL}.
\item
{\tt int symmetryflag} : type of symmetry for the matrix,
{\tt SPOOLES\_SYMMETRIC}, {\tt SPOOLES\_HERMITIAN}
or {\tt SPOOLES\_NONSYMMETRIC},
default value is {\tt SPOOLES\_SYMMETRIC}.
\end{itemize}
%
\item Factorization parameters:
\begin{itemize}
\item
{\tt int sparsityflag} : 
{\tt SPOOLES\_DENSE\_FRONTS} for a direct factorization,
or {\tt SPOOLES\_SPARSE\_FRONTS} for an approximate factorization,
default value is {\tt SPOOLES\_DENSE\_FRONTS}.
\item
{\tt int pivotingflag} : 
{\tt SPOOLES\_PIVOTING} for pivoting enabled,
or {\tt SPOOLES\_NO\_PIVOTING} for no pivoting,
default value is {\tt SPOOLES\_NO\_PIVOTING}.
\item
{\tt double tau} : used when pivoting is enabled,
all entries in $L$ and $U$ have magnitude less than or equal to
\texttt{tau},
default value is 100.
\item
{\tt double droptol} : used for an approximation,
all entries in $L$ and $U$ that are kept 
have magnitude greater than or equal to \texttt{droptol}.
default value is 0.001.
\item
{\tt PatchAndGoInfo *patchinfo} : pointer to an object that
controls special factorizations for optimization matrices
and singular matrices from structural analysis,
default value is \texttt{NULL} which means no special action is taken.
See the Reference Manual for more information.
\end{itemize}
%
\item Pointers to objects:
\begin{itemize}
\item
{\tt ETree *frontETree} : object that defines the factorizations,
e.g., the number of fronts, the tree they form, the number of
internal and external rows for each front, and the map from
vertices to the front where it is contained.
\item
{\tt IVL *symbfacIVL} : object that contains the symbolic
factorization of the matrix.
\item
{\tt SubMtxManager *mtxmanager} : object that manages the
\texttt{SubMtx} objects that store the factor entries and are used
in the solves.
\item
{\tt FrontMtx *frontmtx} : object that stores the $L$, $D$ and $U$
factor matrices.
\item
{\tt IV *oldToNewIV} : object that stores old-to-new permutation vector.
\item
{\tt IV *newToOldIV} : object that stores new-to-old permutation vector.
\end{itemize}
%
\item Multithreaded information:
\begin{itemize}
\item
{\tt int nthread} : number of threads to be used during the factor and
solve.
\item
{\tt int lookahead} : this parameter is used to possibly reduce the
idle time of threads during the factorization.
When {\tt lookahead} is 0, the factorization uses the least amount
of working storage but threads can be idle.
Larger values of {\tt lookahead} tend to increase the working
storage but may decrease the execution time.
Values of {\tt lookahead} greater than {\tt nthread} are not useful.
\item
{\tt IV *ownersIV} : this object contains the map from fronts to
their owning processors.
\item
{\tt SolveMap *solvemap} : this object contains the map from factor
submatrices to their owning processors.
\item
{\tt DV *cumopsDV} : this object is formed when the map from
fronts to owning processors is created.
Its size is {\tt nthread} and contains the operations that each
thread will perform during a direct factorization without pivoting.
\end{itemize}
%
\item Message information, statistics and cpu times:
\begin{itemize}
\item
{\tt int msglvl} : message level for output.
When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.
\item
{\tt FILE *msgFile} : message file for output.
When \texttt{msglvl} $>$ 0, \texttt{msgFile} must not be \texttt{NULL}.
\item
{\tt int stats[6]} : statistics for the factorization.
\begin{center}
\begin{tabular}{ll}
\texttt{stats[0]} : & \# of pivots \\
\texttt{stats[1]} : & \# of pivot tests \\
\texttt{stats[2]} : & \# of delayed rows and columns
\end{tabular}
\begin{tabular}{ll}
\texttt{stats[3]} : & \# of entries in $D$ \\
\texttt{stats[4]} : & \# of entries in $L$ \\
\texttt{stats[5]} : & \# of entries in $U$
\end{tabular}
\end{center}
\item
{\tt double cpus[16]} : cpus for the different functions.
\begin{center}
\begin{tabular}{ll}
\texttt{cpus[0]} : & time to construct \texttt{Graph} \\
\texttt{cpus[1]} : & time to compress \texttt{Graph} \\
\texttt{cpus[2]} : & time to order \texttt{Graph} \\
\texttt{cpus[3]} : & time for symbolic factorization \\
\texttt{cpus[4]} : & total setup time \\
\texttt{cpus[5]} : & time to setup the factorization \\
\texttt{cpus[6]} : & time to permute matrix \\
\texttt{cpus[7]} : & time to initialize front matrix 
\end{tabular}
\begin{tabular}{ll}
\texttt{cpus[8]} : & time to factor matrix \\
\texttt{cpus[9]} : & time to post-process matrix \\
\texttt{cpus[10]} : & total factor time \\
\texttt{cpus[11]} : & time to setup the parallel solve \\
\texttt{cpus[12]} : & time to permute rhs \\
\texttt{cpus[13]} : & time to solve \\
\texttt{cpus[14]} : & time to permute solution \\
\texttt{cpus[15]} : & total solve time
\end{tabular}
\end{center}
\end{itemize}
\end{itemize}
\par
\section{Prototypes and descriptions of \texttt{BridgeMT} methods}
\label{section:BridgeMT:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt BridgeMT} object.
\par
\subsection{Basic methods}
\label{subsection:BridgeMT:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
BridgeMT * BridgeMT_new ( void ) ;
\end{verbatim}
\index{BridgeMT_new@{\tt BridgeMT\_new()}}
This method simply allocates storage for the {\tt BridgeMT} structure 
and then sets the default fields by a call to 
{\tt BridgeMT\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setDefaultFields ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_setDefaultFields@{\tt BridgeMT\_setDefaultFields()}}
The structure's fields are set to default values:
\begin{itemize}
\item
\texttt{neqns} = \texttt{nedges} = \texttt{Neqns} =
\texttt{Nedges} = 0.
\item
\texttt{maxdomainsize} = \texttt{maxnzeros} 
   = \texttt{maxsize} = \texttt{seed} = -1.
\texttt{compressCutoff} = 0.
\item
\texttt{type} = \texttt{SPOOLES\_REAL}.
\item
\texttt{symmetryflag} = \texttt{SPOOLES\_SYMMETRIC}.
\item
\texttt{sparsityflag} = \texttt{SPOOLES\_DENSE\_FRONTS}.
\item
\texttt{pivotingflag} = \texttt{SPOOLES\_NO\_PIVOTING}.
\item
\texttt{tau} = 100., \texttt{droptol} = 0.001.
\item
\texttt{lookahead} = \texttt{nthread} = 0.
\item
\texttt{patchinfo},
\texttt{frontETree},
\texttt{symbfacIVL},
\texttt{mtxmanager},
\texttt{frontmtx},
\texttt{oldToNewIV},
\texttt{newToOldIV},
\texttt{ownersIV},
\texttt{solvemap} and
\texttt{cumopsDV} 
are all set to \texttt{NULL}.
\end{itemize}
The \texttt{stats[6]} and \texttt{cpus[16]} vectors are filled 
with zeros.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_clearData ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_clearData@{\tt BridgeMT\_clearData()}}
This method clears the object and free's any owned data.
It then calls {\tt BridgeMT\_setDefaultFields()}.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_free ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_free@{\tt BridgeMT\_free()}}
This method releases any storage by a call to
{\tt BridgeMT\_clearData()} and then free the space for {\tt bridge}.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Instance methods}
\label{subsection:BridgeMT:proto:instance}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_oldToNewIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_oldToNewIV@{\tt BridgeMT\_oldToNewIV()}}
This method fills \texttt{*pobj} with its \texttt{oldToNewIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_newToOldIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_newToOldIV@{\tt BridgeMT\_newToOldIV()}}
This method fills \texttt{*pobj} with its \texttt{newToOldIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_frontETree ( BridgeMT *bridge, ETree **pobj ) ;
\end{verbatim}
\index{BridgeMT_frontETree@{\tt BridgeMT\_frontETree()}}
This method fills \texttt{*pobj} with its \texttt{frontETree} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_symbfacIVL ( BridgeMT *bridge, IVL **pobj ) ;
\end{verbatim}
\index{BridgeMT_symbfacIVL@{\tt BridgeMT\_symbfacIVL()}}
This method fills \texttt{*pobj} with its \texttt{symbfacIVL} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_mtxmanager ( BridgeMT *bridge, SubMtxManager **pobj ) ;
\end{verbatim}
\index{BridgeMT_mtxmanager@{\tt BridgeMT\_mtxmanager()}}
This method fills \texttt{*pobj} with its \texttt{mtxmanager} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_frontmtx ( BridgeMT *bridge, FrontMtx **pobj ) ;
\end{verbatim}
\index{BridgeMT_frontmtx@{\tt BridgeMT\_frontmtx()}}
This method fills \texttt{*pobj} with its \texttt{frontmtx} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_ownersIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_ownersIV@{\tt BridgeMT\_ownersIV()}}
This method fills \texttt{*pobj} with its \texttt{ownersIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solvemap ( BridgeMT *bridge, SolveMap **pobj ) ;
\end{verbatim}
\index{BridgeMT_solvemap@{\tt BridgeMT\_solvemap()}}
This method fills \texttt{*pobj} with its \texttt{solvemap} pointer.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_nthread ( BridgeMT *bridge, int *pnthread ) ;
\end{verbatim}
\index{BridgeMT_nthread@{\tt BridgeMT\_nthread()}}
This method fills \texttt{*pobj} with the number of threads.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pnthread} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_lookahead ( BridgeMT *bridge, int *plookahead ) ;
\end{verbatim}
\index{BridgeMT_lookahead@{\tt BridgeMT\_lookahead()}}
This method fills \texttt{*pobj} with the lookahead parameter.
\par \noindent {\it Return value:}
1 for a normal return, 
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{plookahead} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Parameter methods}
\label{subsection:BridgeMT:proto:parameters}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setMatrixParams ( BridgeMT *bridge, int neqns, int type, int symmetryflag ) ;
\end{verbatim}
\index{BridgeMT_setMatrixParams@{\tt BridgeMT\_setMatrixParams()}}
This method sets the number of equations, type of entries, 
and symmetry type of the matrix.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{neqns} $\le$ 0
\end{tabular}
\begin{tabular}{ll}
-3 & \texttt{type} is invalid \\
-4 & \texttt{symmetryflag} is invalid \\
-5 & symmetry flag is Hermitian but type is real
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setOrderingParams ( BridgeMT *bridge, int maxdomainsize, int maxnzeros, 
                               int maxsize, int seed, double compressCutoff ) ;
\end{verbatim}
\index{BridgeMT_setOrderingParams@{\tt BridgeMT\_setOrderingParams()}}
This method sets parameters needed for the ordering.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{maxdomainsize} $\le$ 0
\end{tabular}
\begin{tabular}{ll}
-3 & \texttt{maxsize} $\le$ 0 \\
-4 & \texttt{compressCutoff} $>$ 1
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setFactorParams ( BridgeMT *bridge, int sparsityflag, int pivotingflag, 
              double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo ) ;
\end{verbatim}
\index{BridgeMT_setFactorParams@{\tt BridgeMT\_setFactorParams()}}
This method sets parameters needed for the factorization.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{sparsityflag} is invalid \\
-3 & \texttt{pivotingflag} is invalid 
\end{tabular}
\begin{tabular}{ll}
-4 & \texttt{tau} $<$ 2.0 \\
-5 & \texttt{droptol} $<$ 0.0 \\
-6 & \texttt{lookahead} $<$ 0
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setMessagesInfo ( BridgeMT *bridge, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{BridgeMT_setMessagesInfo@{\tt BridgeMT\_setMessagesInfo()}}
This method sets the message level and file.
\par \noindent {\it Return value:}
1 for a  normal return,
-1 if \texttt{bridge} is \texttt{NULL},
-2 if \texttt{msglvl} $>$ 0 and \texttt{msgFile} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Setup methods}
\label{subsection:BridgeMT:proto:setup}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setup ( BridgeMT *bridge, InpMtx *mtxA ) ;
\end{verbatim}
\index{BridgeMT_setup@{\tt BridgeMT\_setup()}}
This method orders the graph, generates the front tree, computes
the symbolic factorization, and creates the two permutation vectors.
\par \noindent {\it Return value:}
1 for a  normal return,
-1 if \texttt{bridge} is \texttt{NULL},
-2 if \texttt{mtxA} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factorStats ( BridgeMT *bridge, int type, int symmetryflag, int *pnfront,
      int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops ) ;
\end{verbatim}
\index{BridgeMT_factorStats@{\tt BridgeMT\_factorStats()}}
This method takes as input the type and symmetry of the matrix,
and fills the pointer fields with the number of fronts, factor
indices, factor entries, forward and back solve operations,
and factor operations.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{type} is invalid \\
-3 & \texttt{symmetryflag} is invalid \\
-4 & \texttt{type} is real but \texttt{symmetryflag} is Hermitian \\
-5 & front tree is not present
\end{tabular}
\begin{tabular}{ll}
~-6 & \texttt{pnfront} is \texttt{NULL}  \\
~-7 & \texttt{pnfactorind} is \texttt{NULL}  \\
~-8 & \texttt{pnfactorent} is \texttt{NULL}  \\
~-9 & \texttt{pnsolveops} is \texttt{NULL}  \\
-10 & \texttt{pnfactorops} is \texttt{NULL} 
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Factor methods}
\label{subsection:BridgeMT:proto:factor}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factorSetup ( BridgeMT *bridge, int nthread, int maptype, double cutoff ) ;
\end{verbatim}
\index{BridgeMT_factorSetup@{\tt BridgeMT\_factorSetup()}}
This method constructs the map from fronts to owning threads, and
computes the number of factor operations that each thread will execute.
The \texttt{maptype} parameter can be one of four values:
\begin{itemize}
\item 1 --- wrap map
\item 2 --- balanced map
\item 3 --- subtree-subset map
\item 4 --- domain decomposition map
\end{itemize}
The wrap map and balanced map are not recommended.
The subtree-subset map is a good map with a very well balanced
nested dissection ordering.
The domain decomposition map is recommended when the nested
dissection tree is imbalanced or for the multisection ordering.
The domain decomposition map requires a \texttt{cutoff} parameter
in $\left \lbrack0,1\right \rbrack$ 
which specifies the relative size of a subtree that forms a domain.
If \texttt{maptype} is not one of 1, 2, 3 or 4, the default map is
used: domain decomposition with
\texttt{cutoff} = 1/(2*\texttt{nthread}).
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return, factorization did complete \\
-1 & \texttt{bridge} is \texttt{NULL} \\
\end{tabular}
\begin{tabular}{ll}
-2 & \texttt{nthread} $<$ 1 \\
-5 & \texttt{frontETree} is not present \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factor ( BridgeMT *bridge, InpMtx *mtxA, int permuteflag, int *perror ) ;
\end{verbatim}
\index{BridgeMT_factor@{\tt BridgeMT\_factor()}}
This method permutes the matrix into the new ordering (if
\texttt{permuteflag} is 1), factors the matrix, and then
post-processes the factors.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return, factorization did complete \\
~0 & factorization did not complete \\
\end{tabular}
\begin{tabular}{ll}
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{mtxA} is \texttt{NULL} \\
-3 & \texttt{perror} is \texttt{NULL} \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Solve methods}
\label{subsection:BridgeMT:proto:solve}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solveSetup ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_solveSetup@{\tt BridgeMT\_solveSetup()}}
This method creates the {\tt SolveMap} object that governs the
parallel solve.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL}
\end{tabular}
\begin{tabular}{ll}
-2 & \texttt{frontMtx} is \texttt{NULL} \\
-3 & \texttt{frontMtx} needs to be postprocessed
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solve ( BridgeMT *bridge, int permuteflag, DenseMtx *mtxX, DenseMtx *mtxY ) ;
\end{verbatim}
\index{BridgeMT_solve@{\tt BridgeMT\_solve()}}
If \texttt{permuteflag} is 1, then \texttt{mtxY} is permuted into
the new ordering.
The linear system $AX = Y$ is solved.
If \texttt{permuteflag} is 1, then \texttt{mtxX} is permuted into
the old ordering.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{X} is \texttt{NULL} \\
-3 & \texttt{Y} is \texttt{NULL} \\
\end{tabular}
\begin{tabular}{ll}
-4 & \texttt{frontmtx} is \texttt{NULL} \\
-5 & \texttt{mtxmanager} is \texttt{NULL} \\
-6 & \texttt{oldToNewIV} needed, but not available \\
-7 & \texttt{newToOldIV} needed, but not available \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}