1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
|
\chapter{The Multithreaded Wrapper Object and Driver}
\label{section:MT}
The goal is to solve $AX = Y$ in a multithreaded environment.
Section 8 of the User's Manual presents a listing of the
{\tt AllInOneMT.c} driver program for solving $AX =Y$.
There are ten steps, and each requires ``mid-level'' knowledge
of several objects of the {\bf SPOOLES} library.
To reduce the complexity of using the library,
(and the complexity rises dramatically in the MPI environments),
we created the {\tt BridgeMT} object.
The term ``bridge'' symbolizes spanning the distance between the
{\bf SPOOLES} library and the CSAR Nastran application code.
The ten steps of the {\tt allInOneMT.c} driver program is reduced to
five using the {\tt BridgeMT} object.
\begin{itemize}
\item Initialization and setup step.
\par
Here the {\tt BridgeMT} object is allocated via a call to
{\tt BridgeMT\_new()}.
Parameters are set using {\tt BridgeMT\_set*()} methods.
The setup phase orders the matrix and prepares all the necessary
{\bf SPOOLES} data structures for the factorization and solve
that follow
\item Setup the numerical factorization.
\par
In this step,
{\tt BridgeMT\_factorSetup()} is called
to define the parallelism for the factorization,
and all data structures for the parallel execution are created.
\item Factorization step.
\par
The matrix is factored via a call to {\tt BridgeMT\_factor()}.
\item Setup the numerical solves.
\par
{\tt BridgeMT\_solveSetup()} is called to set up the parallel solves.
This must be called {\it once} after a factorization,
one or more solves may follow.
\item Solution step.
\par
The linear system is solved via a call to {\tt BridgeMT\_solve()}.
\end{itemize}
\par
The {\tt BridgeMT} object has many parameters that control
the ordering of the matrix,
the pivoting tolerance (if pivoting is requested),
the drop tolerance (for an approximate factorization),
and so on.
Rather than burden the user with the knowledge of and setting these
parameters, there are decent default values built into the object.
\par
Section~\ref{section:BridgeMT:quick-look-MT-driver} takes a quick
look at the {\tt BridgeMT} driver program (whose complete listing is
found in Appendix~\ref{chapter:MT_driver}).
Section~\ref{section:BridgeMT:dataStructure} describes the internal
data fields of the {\tt BridgeMT} object.
Section~\ref{section:Bridge:proto} contains the prototypes and
descriptions of all {\tt Bridge} methods.
\par
\section{A quick look at the multithreaded driver program}
\label{section:BridgeMT:quick-look-MT-driver}
\par
The entire listing of this multithreaded driver is found in
Appendix~\ref{chapter:MT_driver}.
We now extract parts of the code.
\begin{itemize}
\item Decode the input.
\par
\begin{verbatim}
msglvl = atoi(argv[1]) ;
msgFileName = argv[6] ;
neqns = atoi(argv[3]) ;
type = atoi(argv[4]) ;
symmetryflag = atoi(argv[5]) ;
mtxFileName = argv[6] ;
rhsFileName = argv[7] ;
solFileName = argv[8] ;
seed = atoi(argv[9]) ;
nthread = atoi(argv[10]) ;
\end{verbatim}
Here is a description of the input parameters.
\begin{itemize}
\item {\tt msglvl} is the message level.
\item {\tt msgFile} is the message file name
\item {\tt neqns} is the number of equations.
\item {\tt type} is the type of entries:
1 ({\tt SPOOLES\_REAL}) or
2 ({\tt SPOOLES\_COMPLEX}).
\item {\tt symmetryflag} is the type of matrix symmetry:
0 ({\tt SPOOLES\_SYMMETRIC}),
1 ({\tt SPOOLES\_HERMITIAN}) or
2 ({\tt SPOOLES\_NONSYMMETRIC}).
\item {\tt mtxFile} is the name of the file from which to read the {\tt
InpMtx} object for $A$.
The file name must have the form {\tt *.inpmtxb} for a binary file or
{\tt *.inpmtxf} for a formatted file.
\item {\tt rhsFile} is the name of the file from which to read the {\tt
DenseMtx} object for the right hand side $Y$.
The file name must have the form {\tt *.densemtxb} for a binary file or
{\tt *.densemtxf} for a formatted file.
\item {\tt solFile} is the name of the file to write the {\tt
DenseMtx} object for the solution $X$.
The file name must have the form {\tt *.densemtxb} for a binary file or
{\tt *.densemtxf} for a formatted file, {\tt "none"} for no output,
or any other name for a human-readable listing.
\item {\tt seed} is a random number seed used in the ordering process.
\item {\tt nthread} is the number of threads to be used in the
factorization and solve.
\end{itemize}
%
\item Read in the {\tt InpMtx} object for $A$.
\begin{verbatim}
mtxA = InpMtx_new() ;
rc = InpMtx_readFromFile(mtxA, mtxFileName) ;
\end{verbatim}
The {\tt rc} parameter is the error return.
In the driver it is tested for an error, but we omit this from the
present discussion.
%
\item Read in the {\tt DenseMtx} object for $Y$.
\begin{verbatim}
mtxY = DenseMtx_new() ;
rc = DenseMtx_readFromFile(mtxY, mtxFileName) ;
DenseMtx_dimensions(mtxY, &nrow, &nrhs) ;
\end{verbatim}
The {\tt nrhs} parameter contains the number of right hand sides,
or equivalently, the number of columns in $Y$.
%
\item Create and setup the {\tt BridgeMT} object.
\begin{verbatim}
bridge = BridgeMT_new() ;
BridgeMT_setMatrixParams(bridge, neqns, type, symmetryflag) ;
BridgeMT_setMessageInfo(bridge, msglvl, msgFile) ;
rc = BridgeMT_setup(bridge, mtxA) ;
\end{verbatim}
The {\tt BridgeMT} object is allocated by {\tt BridgeMT\_new()},
and various parameters are set.
The actual ordering of the matrix, symbolic factorization,
and permutation creation are performed inside the {\tt BridgeMT\_setup()}
method.
%
\item Setup the numerical factorization.
\begin{verbatim}
rc = BridgeMT_factorSetup(bridge, nthread, 0, 0.0) ;
\end{verbatim}
This step tells the \texttt{BridgeMT} object the number of threads
to be used in the factorization and solve.
The third and fourth parameters define the particular type
of map of the computations to processors.
When the third parameter is zero, the defaults map is used.
If {\tt rc = 1}, the setup completed without any error.
%
\item Compute the matrix factorization.
\begin{verbatim}
permuteflag = 1 ;
rc = BridgeMT_factor(bridge, mtxA, permuteflag, &error) ;
\end{verbatim}
When {\tt permuteflag} is {\tt 1}, it means that the matrix in {\tt
mtxA} has not yet been permuted into the new ordering and so is
done inside the method.
The {\tt error} flag is filled with an error code that tells how far the
factorization was able to proceed.
If {\tt rc = 1}, the factorization completed without any error.
%
\item Setup the solve.
\begin{verbatim}
rc = BridgeMT_solveSetup(bridge) ;
\end{verbatim}
This method sets up the environment for a parallel solve.
If {\tt rc = 1}, the setup completed without any error.
%
\item Solve the linear system.
\begin{verbatim}
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
rc = BridgeMT_solve(bridge, permuteflag, mtxX, mtxY) ;
\end{verbatim}
The {\tt DenseMtx} object {\tt mtxX} is created and initialized to be
the same type and size as {\tt mtxY}.
Its entries are explicitly zeroed (this is not necessary but is a good
idea in general).
The solution is then solved.
Again, note the presence of {\tt permuteflag}.
When {\tt 1}, \texttt{mtxY} needs to be permuted into the new ordering,
and \texttt{mtxX} is returned in the original ordering.
\end{itemize}
\par
\section{The \texttt{BridgeMT} Data Structure}
\label{section:BridgeMT:dataStructure}
\par
The {\tt BridgeMT} structure has the following fields.
\begin{itemize}
%
\item Graph parameters:
\begin{itemize}
\item
{\tt int neqns} : number of equations,
i.e., number of vertices in the graph.
\item
{\tt int nedges} : number of edges
(includes $(u,v)$, $(v,u)$ and $(u,u)$).
\item
{\tt int Neqns} : number of equations in the compressed graph.
\item
{\tt int Nedges} : number of edges in the compressed graph.
\end{itemize}
%
\item Ordering parameters:
\begin{itemize}
\item
{\tt int maxdomainsize} : maximum size of a subgraph to not split any
further during the nested dissection process.
\item
{\tt int maxnzeros} : maximum number of zeros to allow in a front
during the supernode amalgamation process.
\item
{\tt int maxsize} : maximum size of a front when the fronts are split.
\item
{\tt int seed} : random number seed.
\item
{\tt double compressCutoff} : if the \texttt{Neqns} $<$
\texttt{compressCutoff} $*$ \texttt{neqns}, then the compressed
graph is formed, ordered and used to create the symbolic
factorization.
\end{itemize}
%
\item Matrix parameters:
\begin{itemize}
\item
{\tt int type} : type of entries,
{\tt SPOOLES\_REAL} or {\tt SPOOLES\_COMPLEX},
default value is {\tt SPOOLES\_REAL}.
\item
{\tt int symmetryflag} : type of symmetry for the matrix,
{\tt SPOOLES\_SYMMETRIC}, {\tt SPOOLES\_HERMITIAN}
or {\tt SPOOLES\_NONSYMMETRIC},
default value is {\tt SPOOLES\_SYMMETRIC}.
\end{itemize}
%
\item Factorization parameters:
\begin{itemize}
\item
{\tt int sparsityflag} :
{\tt SPOOLES\_DENSE\_FRONTS} for a direct factorization,
or {\tt SPOOLES\_SPARSE\_FRONTS} for an approximate factorization,
default value is {\tt SPOOLES\_DENSE\_FRONTS}.
\item
{\tt int pivotingflag} :
{\tt SPOOLES\_PIVOTING} for pivoting enabled,
or {\tt SPOOLES\_NO\_PIVOTING} for no pivoting,
default value is {\tt SPOOLES\_NO\_PIVOTING}.
\item
{\tt double tau} : used when pivoting is enabled,
all entries in $L$ and $U$ have magnitude less than or equal to
\texttt{tau},
default value is 100.
\item
{\tt double droptol} : used for an approximation,
all entries in $L$ and $U$ that are kept
have magnitude greater than or equal to \texttt{droptol}.
default value is 0.001.
\item
{\tt PatchAndGoInfo *patchinfo} : pointer to an object that
controls special factorizations for optimization matrices
and singular matrices from structural analysis,
default value is \texttt{NULL} which means no special action is taken.
See the Reference Manual for more information.
\end{itemize}
%
\item Pointers to objects:
\begin{itemize}
\item
{\tt ETree *frontETree} : object that defines the factorizations,
e.g., the number of fronts, the tree they form, the number of
internal and external rows for each front, and the map from
vertices to the front where it is contained.
\item
{\tt IVL *symbfacIVL} : object that contains the symbolic
factorization of the matrix.
\item
{\tt SubMtxManager *mtxmanager} : object that manages the
\texttt{SubMtx} objects that store the factor entries and are used
in the solves.
\item
{\tt FrontMtx *frontmtx} : object that stores the $L$, $D$ and $U$
factor matrices.
\item
{\tt IV *oldToNewIV} : object that stores old-to-new permutation vector.
\item
{\tt IV *newToOldIV} : object that stores new-to-old permutation vector.
\end{itemize}
%
\item Multithreaded information:
\begin{itemize}
\item
{\tt int nthread} : number of threads to be used during the factor and
solve.
\item
{\tt int lookahead} : this parameter is used to possibly reduce the
idle time of threads during the factorization.
When {\tt lookahead} is 0, the factorization uses the least amount
of working storage but threads can be idle.
Larger values of {\tt lookahead} tend to increase the working
storage but may decrease the execution time.
Values of {\tt lookahead} greater than {\tt nthread} are not useful.
\item
{\tt IV *ownersIV} : this object contains the map from fronts to
their owning processors.
\item
{\tt SolveMap *solvemap} : this object contains the map from factor
submatrices to their owning processors.
\item
{\tt DV *cumopsDV} : this object is formed when the map from
fronts to owning processors is created.
Its size is {\tt nthread} and contains the operations that each
thread will perform during a direct factorization without pivoting.
\end{itemize}
%
\item Message information, statistics and cpu times:
\begin{itemize}
\item
{\tt int msglvl} : message level for output.
When 0, no output, When 1, just statistics and cpu times.
When greater than 1, more and more output.
\item
{\tt FILE *msgFile} : message file for output.
When \texttt{msglvl} $>$ 0, \texttt{msgFile} must not be \texttt{NULL}.
\item
{\tt int stats[6]} : statistics for the factorization.
\begin{center}
\begin{tabular}{ll}
\texttt{stats[0]} : & \# of pivots \\
\texttt{stats[1]} : & \# of pivot tests \\
\texttt{stats[2]} : & \# of delayed rows and columns
\end{tabular}
\begin{tabular}{ll}
\texttt{stats[3]} : & \# of entries in $D$ \\
\texttt{stats[4]} : & \# of entries in $L$ \\
\texttt{stats[5]} : & \# of entries in $U$
\end{tabular}
\end{center}
\item
{\tt double cpus[16]} : cpus for the different functions.
\begin{center}
\begin{tabular}{ll}
\texttt{cpus[0]} : & time to construct \texttt{Graph} \\
\texttt{cpus[1]} : & time to compress \texttt{Graph} \\
\texttt{cpus[2]} : & time to order \texttt{Graph} \\
\texttt{cpus[3]} : & time for symbolic factorization \\
\texttt{cpus[4]} : & total setup time \\
\texttt{cpus[5]} : & time to setup the factorization \\
\texttt{cpus[6]} : & time to permute matrix \\
\texttt{cpus[7]} : & time to initialize front matrix
\end{tabular}
\begin{tabular}{ll}
\texttt{cpus[8]} : & time to factor matrix \\
\texttt{cpus[9]} : & time to post-process matrix \\
\texttt{cpus[10]} : & total factor time \\
\texttt{cpus[11]} : & time to setup the parallel solve \\
\texttt{cpus[12]} : & time to permute rhs \\
\texttt{cpus[13]} : & time to solve \\
\texttt{cpus[14]} : & time to permute solution \\
\texttt{cpus[15]} : & total solve time
\end{tabular}
\end{center}
\end{itemize}
\end{itemize}
\par
\section{Prototypes and descriptions of \texttt{BridgeMT} methods}
\label{section:BridgeMT:proto}
\par
This section contains brief descriptions including prototypes
of all methods that belong to the {\tt BridgeMT} object.
\par
\subsection{Basic methods}
\label{subsection:BridgeMT:proto:basics}
\par
As usual, there are four basic methods to support object creation,
setting default fields, clearing any allocated data, and free'ing
the object.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
BridgeMT * BridgeMT_new ( void ) ;
\end{verbatim}
\index{BridgeMT_new@{\tt BridgeMT\_new()}}
This method simply allocates storage for the {\tt BridgeMT} structure
and then sets the default fields by a call to
{\tt BridgeMT\_setDefaultFields()}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setDefaultFields ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_setDefaultFields@{\tt BridgeMT\_setDefaultFields()}}
The structure's fields are set to default values:
\begin{itemize}
\item
\texttt{neqns} = \texttt{nedges} = \texttt{Neqns} =
\texttt{Nedges} = 0.
\item
\texttt{maxdomainsize} = \texttt{maxnzeros}
= \texttt{maxsize} = \texttt{seed} = -1.
\texttt{compressCutoff} = 0.
\item
\texttt{type} = \texttt{SPOOLES\_REAL}.
\item
\texttt{symmetryflag} = \texttt{SPOOLES\_SYMMETRIC}.
\item
\texttt{sparsityflag} = \texttt{SPOOLES\_DENSE\_FRONTS}.
\item
\texttt{pivotingflag} = \texttt{SPOOLES\_NO\_PIVOTING}.
\item
\texttt{tau} = 100., \texttt{droptol} = 0.001.
\item
\texttt{lookahead} = \texttt{nthread} = 0.
\item
\texttt{patchinfo},
\texttt{frontETree},
\texttt{symbfacIVL},
\texttt{mtxmanager},
\texttt{frontmtx},
\texttt{oldToNewIV},
\texttt{newToOldIV},
\texttt{ownersIV},
\texttt{solvemap} and
\texttt{cumopsDV}
are all set to \texttt{NULL}.
\end{itemize}
The \texttt{stats[6]} and \texttt{cpus[16]} vectors are filled
with zeros.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_clearData ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_clearData@{\tt BridgeMT\_clearData()}}
This method clears the object and free's any owned data.
It then calls {\tt BridgeMT\_setDefaultFields()}.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_free ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_free@{\tt BridgeMT\_free()}}
This method releases any storage by a call to
{\tt BridgeMT\_clearData()} and then free the space for {\tt bridge}.
\par \noindent {\it Return value:}
1 for a normal return, -1 if \texttt{bridge} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Instance methods}
\label{subsection:BridgeMT:proto:instance}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_oldToNewIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_oldToNewIV@{\tt BridgeMT\_oldToNewIV()}}
This method fills \texttt{*pobj} with its \texttt{oldToNewIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_newToOldIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_newToOldIV@{\tt BridgeMT\_newToOldIV()}}
This method fills \texttt{*pobj} with its \texttt{newToOldIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_frontETree ( BridgeMT *bridge, ETree **pobj ) ;
\end{verbatim}
\index{BridgeMT_frontETree@{\tt BridgeMT\_frontETree()}}
This method fills \texttt{*pobj} with its \texttt{frontETree} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_symbfacIVL ( BridgeMT *bridge, IVL **pobj ) ;
\end{verbatim}
\index{BridgeMT_symbfacIVL@{\tt BridgeMT\_symbfacIVL()}}
This method fills \texttt{*pobj} with its \texttt{symbfacIVL} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_mtxmanager ( BridgeMT *bridge, SubMtxManager **pobj ) ;
\end{verbatim}
\index{BridgeMT_mtxmanager@{\tt BridgeMT\_mtxmanager()}}
This method fills \texttt{*pobj} with its \texttt{mtxmanager} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_frontmtx ( BridgeMT *bridge, FrontMtx **pobj ) ;
\end{verbatim}
\index{BridgeMT_frontmtx@{\tt BridgeMT\_frontmtx()}}
This method fills \texttt{*pobj} with its \texttt{frontmtx} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_ownersIV ( BridgeMT *bridge, IV **pobj ) ;
\end{verbatim}
\index{BridgeMT_ownersIV@{\tt BridgeMT\_ownersIV()}}
This method fills \texttt{*pobj} with its \texttt{ownersIV} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solvemap ( BridgeMT *bridge, SolveMap **pobj ) ;
\end{verbatim}
\index{BridgeMT_solvemap@{\tt BridgeMT\_solvemap()}}
This method fills \texttt{*pobj} with its \texttt{solvemap} pointer.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pobj} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_nthread ( BridgeMT *bridge, int *pnthread ) ;
\end{verbatim}
\index{BridgeMT_nthread@{\tt BridgeMT\_nthread()}}
This method fills \texttt{*pobj} with the number of threads.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{pnthread} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_lookahead ( BridgeMT *bridge, int *plookahead ) ;
\end{verbatim}
\index{BridgeMT_lookahead@{\tt BridgeMT\_lookahead()}}
This method fills \texttt{*pobj} with the lookahead parameter.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL}.
-2 if \texttt{plookahead} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Parameter methods}
\label{subsection:BridgeMT:proto:parameters}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setMatrixParams ( BridgeMT *bridge, int neqns, int type, int symmetryflag ) ;
\end{verbatim}
\index{BridgeMT_setMatrixParams@{\tt BridgeMT\_setMatrixParams()}}
This method sets the number of equations, type of entries,
and symmetry type of the matrix.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{neqns} $\le$ 0
\end{tabular}
\begin{tabular}{ll}
-3 & \texttt{type} is invalid \\
-4 & \texttt{symmetryflag} is invalid \\
-5 & symmetry flag is Hermitian but type is real
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setOrderingParams ( BridgeMT *bridge, int maxdomainsize, int maxnzeros,
int maxsize, int seed, double compressCutoff ) ;
\end{verbatim}
\index{BridgeMT_setOrderingParams@{\tt BridgeMT\_setOrderingParams()}}
This method sets parameters needed for the ordering.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{maxdomainsize} $\le$ 0
\end{tabular}
\begin{tabular}{ll}
-3 & \texttt{maxsize} $\le$ 0 \\
-4 & \texttt{compressCutoff} $>$ 1
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setFactorParams ( BridgeMT *bridge, int sparsityflag, int pivotingflag,
double tau, double droptol, int lookahead, PatchAndGoInfo *patchinfo ) ;
\end{verbatim}
\index{BridgeMT_setFactorParams@{\tt BridgeMT\_setFactorParams()}}
This method sets parameters needed for the factorization.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{sparsityflag} is invalid \\
-3 & \texttt{pivotingflag} is invalid
\end{tabular}
\begin{tabular}{ll}
-4 & \texttt{tau} $<$ 2.0 \\
-5 & \texttt{droptol} $<$ 0.0 \\
-6 & \texttt{lookahead} $<$ 0
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setMessagesInfo ( BridgeMT *bridge, int msglvl, FILE *msgFile ) ;
\end{verbatim}
\index{BridgeMT_setMessagesInfo@{\tt BridgeMT\_setMessagesInfo()}}
This method sets the message level and file.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL},
-2 if \texttt{msglvl} $>$ 0 and \texttt{msgFile} is \texttt{NULL}.
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Setup methods}
\label{subsection:BridgeMT:proto:setup}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_setup ( BridgeMT *bridge, InpMtx *mtxA ) ;
\end{verbatim}
\index{BridgeMT_setup@{\tt BridgeMT\_setup()}}
This method orders the graph, generates the front tree, computes
the symbolic factorization, and creates the two permutation vectors.
\par \noindent {\it Return value:}
1 for a normal return,
-1 if \texttt{bridge} is \texttt{NULL},
-2 if \texttt{mtxA} is \texttt{NULL}.
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factorStats ( BridgeMT *bridge, int type, int symmetryflag, int *pnfront,
int *pnfactorind, int *pnfactorent, int *pnsolveops, double *pnfactorops ) ;
\end{verbatim}
\index{BridgeMT_factorStats@{\tt BridgeMT\_factorStats()}}
This method takes as input the type and symmetry of the matrix,
and fills the pointer fields with the number of fronts, factor
indices, factor entries, forward and back solve operations,
and factor operations.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{type} is invalid \\
-3 & \texttt{symmetryflag} is invalid \\
-4 & \texttt{type} is real but \texttt{symmetryflag} is Hermitian \\
-5 & front tree is not present
\end{tabular}
\begin{tabular}{ll}
~-6 & \texttt{pnfront} is \texttt{NULL} \\
~-7 & \texttt{pnfactorind} is \texttt{NULL} \\
~-8 & \texttt{pnfactorent} is \texttt{NULL} \\
~-9 & \texttt{pnsolveops} is \texttt{NULL} \\
-10 & \texttt{pnfactorops} is \texttt{NULL}
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Factor methods}
\label{subsection:BridgeMT:proto:factor}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factorSetup ( BridgeMT *bridge, int nthread, int maptype, double cutoff ) ;
\end{verbatim}
\index{BridgeMT_factorSetup@{\tt BridgeMT\_factorSetup()}}
This method constructs the map from fronts to owning threads, and
computes the number of factor operations that each thread will execute.
The \texttt{maptype} parameter can be one of four values:
\begin{itemize}
\item 1 --- wrap map
\item 2 --- balanced map
\item 3 --- subtree-subset map
\item 4 --- domain decomposition map
\end{itemize}
The wrap map and balanced map are not recommended.
The subtree-subset map is a good map with a very well balanced
nested dissection ordering.
The domain decomposition map is recommended when the nested
dissection tree is imbalanced or for the multisection ordering.
The domain decomposition map requires a \texttt{cutoff} parameter
in $\left \lbrack0,1\right \rbrack$
which specifies the relative size of a subtree that forms a domain.
If \texttt{maptype} is not one of 1, 2, 3 or 4, the default map is
used: domain decomposition with
\texttt{cutoff} = 1/(2*\texttt{nthread}).
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return, factorization did complete \\
-1 & \texttt{bridge} is \texttt{NULL} \\
\end{tabular}
\begin{tabular}{ll}
-2 & \texttt{nthread} $<$ 1 \\
-5 & \texttt{frontETree} is not present \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_factor ( BridgeMT *bridge, InpMtx *mtxA, int permuteflag, int *perror ) ;
\end{verbatim}
\index{BridgeMT_factor@{\tt BridgeMT\_factor()}}
This method permutes the matrix into the new ordering (if
\texttt{permuteflag} is 1), factors the matrix, and then
post-processes the factors.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return, factorization did complete \\
~0 & factorization did not complete \\
\end{tabular}
\begin{tabular}{ll}
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{mtxA} is \texttt{NULL} \\
-3 & \texttt{perror} is \texttt{NULL} \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
\par
\subsection{Solve methods}
\label{subsection:BridgeMT:proto:solve}
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solveSetup ( BridgeMT *bridge ) ;
\end{verbatim}
\index{BridgeMT_solveSetup@{\tt BridgeMT\_solveSetup()}}
This method creates the {\tt SolveMap} object that governs the
parallel solve.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL}
\end{tabular}
\begin{tabular}{ll}
-2 & \texttt{frontMtx} is \texttt{NULL} \\
-3 & \texttt{frontMtx} needs to be postprocessed
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
int BridgeMT_solve ( BridgeMT *bridge, int permuteflag, DenseMtx *mtxX, DenseMtx *mtxY ) ;
\end{verbatim}
\index{BridgeMT_solve@{\tt BridgeMT\_solve()}}
If \texttt{permuteflag} is 1, then \texttt{mtxY} is permuted into
the new ordering.
The linear system $AX = Y$ is solved.
If \texttt{permuteflag} is 1, then \texttt{mtxX} is permuted into
the old ordering.
\par \noindent {\it Return value:}
\begin{center}
\begin{tabular}{ll}
~1 & normal return \\
-1 & \texttt{bridge} is \texttt{NULL} \\
-2 & \texttt{X} is \texttt{NULL} \\
-3 & \texttt{Y} is \texttt{NULL} \\
\end{tabular}
\begin{tabular}{ll}
-4 & \texttt{frontmtx} is \texttt{NULL} \\
-5 & \texttt{mtxmanager} is \texttt{NULL} \\
-6 & \texttt{oldToNewIV} needed, but not available \\
-7 & \texttt{newToOldIV} needed, but not available \\
\end{tabular}
\end{center}
%-----------------------------------------------------------------------
\end{enumerate}
|