1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
/* Setup.c */
#include "../Bridge.h"
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------------------------
purpose --
given an InpMtx object that contains the structure of A, initialize
the bridge data structure for the serial factor's and solve's.
return value --
1 -- normal return
-1 -- bridge is NULL
-2 -- mtxA is NULL
created -- 98sep17, cca
-------------------------------------------------------------------
*/
int
Bridge_setup (
Bridge *bridge,
InpMtx *mtxA
) {
double t0, t1, t2 ;
ETree *frontETree ;
FILE *msgFile ;
Graph *graph ;
int compressed, msglvl, nedges, neqns, Neqns ;
IV *eqmapIV ;
IVL *adjIVL, *symbfacIVL ;
MARKTIME(t0) ;
/*
--------------------
check the input data
--------------------
*/
if ( bridge == NULL ) {
fprintf(stderr, "\n fatal error in Bridge_setup()"
"\n data is NULL\n") ;
return(-1) ;
}
if ( mtxA == NULL ) {
fprintf(stderr, "\n fatal error in Bridge_setup()"
"\n A is NULL\n") ;
return(-2) ;
}
msglvl = bridge->msglvl ;
msgFile = bridge->msgFile ;
neqns = bridge->neqns ;
if ( ! (INPMTX_IS_BY_ROWS(mtxA) || INPMTX_IS_BY_COLUMNS(mtxA)) ) {
/*
------------------------------
change coordinate type to rows
------------------------------
*/
InpMtx_changeCoordType(mtxA, INPMTX_BY_ROWS) ;
}
if ( ! INPMTX_IS_BY_VECTORS(mtxA) ) {
/*
------------------------------
change storage mode to vectors
------------------------------
*/
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
}
/*
---------------------------
create a Graph object for A
---------------------------
*/
MARKTIME(t1) ;
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA);
nedges = bridge->nedges = IVL_tsize(adjIVL),
Graph_init2(graph, 0, neqns, 0, nedges,
neqns, nedges, adjIVL, NULL, NULL) ;
MARKTIME(t2) ;
bridge->cpus[0] += t2 - t1 ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n CPU %8.3f : time to create Graph", t2 - t1) ;
fflush(msgFile) ;
}
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n graph of the input matrix") ;
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
/*
-----------------------
get the equivalence map
-----------------------
*/
MARKTIME(t1) ;
eqmapIV = Graph_equivMap(graph) ;
Neqns = bridge->Neqns = 1 + IV_max(eqmapIV) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n graph's equivalence map") ;
IV_writeForHumanEye(eqmapIV, msgFile) ;
fflush(msgFile) ;
}
if ( Neqns < bridge->compressCutoff * neqns ) {
Graph *cgraph ;
/*
------------------
compress the graph
------------------
*/
cgraph = Graph_compress2(graph, eqmapIV, 1) ;
Graph_free(graph) ;
graph = cgraph ;
compressed = 1 ;
bridge->Nedges = graph->nedges ;
} else {
compressed = 0 ;
}
MARKTIME(t2) ;
bridge->cpus[1] += t2 - t1 ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n CPU %8.3f : time to create compressed graph",
t2 - t1) ;
fflush(msgFile) ;
}
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n graph to order") ;
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
/*
---------------
order the graph
---------------
*/
MARKTIME(t1) ;
if ( bridge->maxdomainsize <= 0 ) {
bridge->maxdomainsize = neqns/32 ;
}
if ( bridge->maxdomainsize <= 0 ) {
bridge->maxdomainsize = 1 ;
}
if ( bridge->maxnzeros < 0 ) {
bridge->maxnzeros = 0.01*neqns ;
}
if ( bridge->maxsize < 0 ) {
bridge->maxsize = neqns ;
}
frontETree = orderViaBestOfNDandMS(graph, bridge->maxdomainsize,
bridge->maxnzeros, bridge->maxsize,
bridge->seed, msglvl, msgFile) ;
bridge->frontETree = frontETree ;
MARKTIME(t2) ;
bridge->cpus[2] += t2 - t1 ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n CPU %8.3f : time to order graph", t2 - t1) ;
fflush(msgFile) ;
}
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye(bridge->frontETree, msgFile) ;
fflush(msgFile) ;
}
MARKTIME(t1) ;
if ( compressed == 1 ) {
ETree *etree ;
IVL *tempIVL ;
/*
----------------------------------------------------------
compute the symbolic factorization of the compressed graph
----------------------------------------------------------
*/
tempIVL = SymbFac_initFromGraph(frontETree, graph) ;
/*
-------------------------------------------------------
expand the symbolic factorization to the original graph
-------------------------------------------------------
*/
symbfacIVL = IVL_expand(tempIVL, eqmapIV) ;
IVL_free(tempIVL) ;
/*
---------------------
expand the front tree
---------------------
*/
etree = ETree_expand(frontETree, eqmapIV) ;
ETree_free(frontETree) ;
frontETree = etree ;
} else {
/*
--------------------------------------------------------
compute the symbolic factorization of the original graph
--------------------------------------------------------
*/
symbfacIVL = SymbFac_initFromGraph(frontETree, graph) ;
}
MARKTIME(t2) ;
bridge->frontETree = frontETree ;
bridge->symbfacIVL = symbfacIVL ;
/*
----------------------------------------------
get the old-to-new and new-to-old permutations
----------------------------------------------
*/
bridge->oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
bridge->newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n old-to-new permutation") ;
IV_writeForHumanEye(bridge->oldToNewIV, msgFile) ;
fprintf(msgFile, "\n\n new-to-old permutation") ;
IV_writeForHumanEye(bridge->newToOldIV, msgFile) ;
fflush(msgFile) ;
}
/*
------------------------------------------------------
overwrite the symbolic factorization with the permuted
indices and sort the lists into ascending order
------------------------------------------------------
*/
IVL_overwrite(symbfacIVL, bridge->oldToNewIV) ;
IVL_sortUp(symbfacIVL) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;
fflush(msgFile) ;
}
/*
--------------------------------------
permute the vertices in the front tree
--------------------------------------
*/
ETree_permuteVertices(frontETree, bridge->oldToNewIV) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n permuted front etree") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;
}
MARKTIME(t2) ;
bridge->cpus[3] += t2 - t1 ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n CPU %8.3f : time for symbolic factorization",
t2 - t1) ;
fflush(msgFile) ;
}
/*
------------------------
free the working storage
------------------------
*/
Graph_free(graph) ;
IV_free(eqmapIV) ;
MARKTIME(t2) ;
bridge->cpus[4] += t2 - t0 ;
return(1) ; }
/*--------------------------------------------------------------------*/
|