1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
/* solve.c */
#include "../Bridge.h"
/*--------------------------------------------------------------------*/
/*
-------------------------------------
purpose -- to solve the linear system
return value ---
1 -- normal return
-1 -- bridge is NULL
-2 -- X is NULL
-3 -- Y is NULL
-4 -- frontmtx is NULL
-5 -- mtxmanager is NULL
-6 -- oldToNewIV not available
-7 -- newToOldIV not available
created -- 98sep18, cca
-------------------------------------
*/
int
Bridge_solve (
Bridge *bridge,
int permuteflag,
DenseMtx *X,
DenseMtx *Y
) {
double cputotal, nops, t0, t1, t2 ;
double cpus[6] ;
FILE *msgFile ;
FrontMtx *frontmtx ;
int msglvl ;
SubMtxManager *mtxmanager ;
/*
---------------
check the input
---------------
*/
MARKTIME(t0) ;
if ( bridge == NULL ) {
fprintf(stderr, "\n error in Bridge_solve"
"\n bridge is NULL\n") ;
return(-1) ;
}
if ( X == NULL ) {
fprintf(stderr, "\n error in Bridge_solve"
"\n X is NULL\n") ;
return(-2) ;
}
if ( Y == NULL ) {
fprintf(stderr, "\n error in Bridge_solve"
"\n Y is NULL\n") ;
return(-3) ;
}
if ( (frontmtx = bridge->frontmtx) == NULL ) {
fprintf(stderr, "\n error in Bridge_solve"
"\n frontmtx is NULL\n") ;
return(-4) ;
}
if ( (mtxmanager = bridge->mtxmanager) == NULL ) {
fprintf(stderr, "\n error in Bridge_solve"
"\n mtxmanager is NULL\n") ;
return(-5) ;
}
msglvl = bridge->msglvl ;
msgFile = bridge->msgFile ;
/*
--------------------------
optionally permute the rhs
--------------------------
*/
if ( permuteflag == 1 ) {
int rc ;
IV *oldToNewIV ;
MARKTIME(t1) ;
rc = Bridge_oldToNewIV(bridge, &oldToNewIV) ;
if (rc != 1) {
fprintf(stderr, "\n error in Bridge_solve()"
"\n rc = %d from Bridge_oldToNewIV()\n", rc) ;
return(-6) ;
}
DenseMtx_permuteRows(Y, oldToNewIV) ;
MARKTIME(t2) ;
bridge->cpus[10] += t2 - t1 ;
}
/*
----------------
solve the system
----------------
*/
nops = ETree_nFactorEntries(bridge->frontETree, bridge->symmetryflag) ;
nops *= 2 * X->ncol ;
if ( bridge->type == SPOOLES_COMPLEX ) {
nops *= 4 ;
}
MARKTIME(t1) ;
DVzero(6, cpus) ;
FrontMtx_solve(frontmtx, X, Y, mtxmanager, cpus, msglvl, msgFile) ;
MARKTIME(t2) ;
bridge->cpus[11] += t2 - t1 ;
if ( msglvl > 1 ) {
fprintf(msgFile, "\n\n CPU %8.3f : solve the system, %.3f mflops",
t2 - t1, 1.e-6*nops/(t2 - t1)) ;
}
cputotal = t2 - t1 ;
if ( cputotal > 0.0 ) {
fprintf(msgFile,
"\n set up solves %8.3f %6.2f"
"\n load rhs and store solution %8.3f %6.2f"
"\n forward solve %8.3f %6.2f"
"\n diagonal solve %8.3f %6.2f"
"\n backward solve %8.3f %6.2f"
"\n total time %8.3f",
cpus[0], 100.*cpus[0]/cputotal,
cpus[1], 100.*cpus[1]/cputotal,
cpus[2], 100.*cpus[2]/cputotal,
cpus[3], 100.*cpus[3]/cputotal,
cpus[4], 100.*cpus[4]/cputotal, cputotal) ;
}
if ( msglvl > 3 ) {
fprintf(msgFile, "\n\n computed solution") ;
DenseMtx_writeForHumanEye(X, msgFile) ;
fflush(stdout) ;
}
/*
-------------------------------
optionally permute the solution
-------------------------------
*/
if ( permuteflag == 1 ) {
int rc ;
IV *newToOldIV ;
MARKTIME(t1) ;
rc = Bridge_newToOldIV(bridge, &newToOldIV) ;
if (rc != 1) {
fprintf(stderr, "\n error in Bridge_solve()"
"\n rc = %d from Bridge_newToOldIV()\n", rc) ;
return(-7) ;
}
DenseMtx_permuteRows(X, newToOldIV) ;
MARKTIME(t2) ;
bridge->cpus[12] += t2 - t1 ;
}
MARKTIME(t2) ;
bridge->cpus[13] += t2 - t0 ;
return(1) ; }
/*--------------------------------------------------------------------*/
|