1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
\vfill \eject
\section{{\tt allInOne.c} -- A Serial $LU$ Driver Program}
\label{section:LU-serial-driver}
\begin{verbatim}
/* allInOne.c */
#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"
/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
------------------------------------------------------------------
all-in-one program to solve A X = Y
(1) read in matrix entries for A and form InpMtx object
(2) read in right hand side for Y entries and form DenseMtx object
(3) form Graph object, order matrix and form front tree
(4) get the permutation, permute the front tree, matrix
and right hand side and get the symbolic factorization
(5) initialize the front matrix object to hold the factor matrices
(6) compute the numeric factorization
(7) post-process the factor matrices
(8) compute the solution
(9) permute the solution into the original ordering
created -- 98jun04, cca
------------------------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char *matrixFileName, *rhsFileName ;
DenseMtx *mtxY, *mtxX ;
Chv *rootchv ;
ChvManager *chvmanager ;
SubMtxManager *mtxmanager ;
FrontMtx *frontmtx ;
InpMtx *mtxA ;
double droptol = 0.0, tau = 100. ;
double cpus[10] ;
ETree *frontETree ;
FILE *inputFile, *msgFile ;
Graph *graph ;
int error, ient, irow, jcol, jrhs, jrow, msglvl, ncol,
nedges, nent, neqns, nrhs, nrow, pivotingflag, seed,
symmetryflag, type ;
int *newToOld, *oldToNew ;
int stats[20] ;
IV *newToOldIV, *oldToNewIV ;
IVL *adjIVL, *symbfacIVL ;
/*--------------------------------------------------------------------*/
/*
--------------------
get input parameters
--------------------
*/
if ( argc != 9 ) {
fprintf(stdout, "\n"
"\n usage: %s msglvl msgFile type symmetryflag pivotingflag"
"\n matrixFileName rhsFileName seed"
"\n msglvl -- message level"
"\n msgFile -- message file"
"\n type -- type of entries"
"\n 1 (SPOOLES_REAL) -- real entries"
"\n 2 (SPOOLES_COMPLEX) -- complex entries"
"\n symmetryflag -- type of matrix"
"\n 0 (SPOOLES_SYMMETRIC) -- symmetric entries"
"\n 1 (SPOOLES_HERMITIAN) -- Hermitian entries"
"\n 2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
"\n pivotingflag -- type of pivoting"
"\n 0 (SPOOLES_NO_PIVOTING) -- no pivoting used"
"\n 1 (SPOOLES_PIVOTING) -- pivoting used"
"\n matrixFileName -- matrix file name, format"
"\n nrow ncol nent"
"\n irow jcol entry"
"\n ..."
"\n note: indices are zero based"
"\n rhsFileName -- right hand side file name, format"
"\n nrow nrhs "
"\n ..."
"\n jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
"\n ..."
"\n seed -- random number seed, used for ordering"
"\n", argv[0]) ;
return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
fprintf(stderr, "\n fatal error in %s"
"\n unable to open file %s\n",
argv[0], argv[2]) ;
return(-1) ;
}
type = atoi(argv[3]) ;
symmetryflag = atoi(argv[4]) ;
pivotingflag = atoi(argv[5]) ;
matrixFileName = argv[6] ;
rhsFileName = argv[7] ;
seed = atoi(argv[8]) ;
/*--------------------------------------------------------------------*/
/*
--------------------------------------------
STEP 1: read the entries from the input file
and create the InpMtx object
--------------------------------------------
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, neqns) ;
if ( type == SPOOLES_REAL ) {
double value ;
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
}
} else {
double imag, real ;
for ( ient = 0 ; ient < nent ; ient++ ) {
fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
}
}
fclose(inputFile) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n input matrix") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-----------------------------------------
STEP 2: read the right hand side matrix Y
-----------------------------------------
*/
inputFile = fopen(rhsFileName, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init(mtxY, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxY) ;
if ( type == SPOOLES_REAL ) {
double value ;
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", &jrow) ;
for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
fscanf(inputFile, "%le", &value) ;
DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ;
}
}
} else {
double imag, real ;
for ( irow = 0 ; irow < nrow ; irow++ ) {
fscanf(inputFile, "%d", &jrow) ;
for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
fscanf(inputFile, "%le %le", &real, &imag) ;
DenseMtx_setComplexEntry(mtxY, jrow, jrhs, real, imag) ;
}
}
}
fclose(inputFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------
STEP 3 : find a low-fill ordering
(1) create the Graph object
(2) order the graph using multiple minimum degree
-------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
NULL, NULL) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n graph of the input matrix") ;
Graph_writeForHumanEye(graph, msgFile) ;
fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n front tree from ordering") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
----------------------------------------------------
STEP 4: get the permutation, permute the front tree,
permute the matrix and right hand side, and
get the symbolic factorization
----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew = IV_entries(oldToNewIV) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
newToOld = IV_entries(newToOldIV) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute(mtxA, oldToNew, oldToNew) ;
if ( symmetryflag == SPOOLES_SYMMETRIC
|| symmetryflag == SPOOLES_HERMITIAN ) {
InpMtx_mapToUpperTriangle(mtxA) ;
}
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows(mtxY, oldToNewIV) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n old-to-new permutation vector") ;
IV_writeForHumanEye(oldToNewIV, msgFile) ;
fprintf(msgFile, "\n\n new-to-old permutation vector") ;
IV_writeForHumanEye(newToOldIV, msgFile) ;
fprintf(msgFile, "\n\n front tree after permutation") ;
ETree_writeForHumanEye(frontETree, msgFile) ;
fprintf(msgFile, "\n\n input matrix after permutation") ;
InpMtx_writeForHumanEye(mtxA, msgFile) ;
fprintf(msgFile, "\n\n right hand side matrix after permutation") ;
DenseMtx_writeForHumanEye(mtxY, msgFile) ;
fprintf(msgFile, "\n\n symbolic factorization") ;
IVL_writeForHumanEye(symbfacIVL, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
------------------------------------------
STEP 5: initialize the front matrix object
------------------------------------------
*/
frontmtx = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag,
FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL,
mtxmanager, msglvl, msgFile) ;
/*--------------------------------------------------------------------*/
/*
-----------------------------------------
STEP 6: compute the numeric factorization
-----------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVfill(10, cpus, 0.0) ;
IVfill(20, stats, 0) ;
rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol,
chvmanager, &error, cpus, stats, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n factor matrix") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
if ( rootchv != NULL ) {
fprintf(msgFile, "\n\n matrix found to be singular\n") ;
exit(-1) ;
}
if ( error >= 0 ) {
fprintf(msgFile, "\n\n error encountered at front %d", error) ;
exit(-1) ;
}
/*--------------------------------------------------------------------*/
/*
--------------------------------------
STEP 7: post-process the factorization
--------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n factor matrix after post-processing") ;
FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------
STEP 8: solve the linear system
-------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager,
cpus, msglvl, msgFile) ;
if ( msglvl > 2 ) {
fprintf(msgFile, "\n\n solution matrix in new ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-------------------------------------------------------
STEP 9: permute the solution into the original ordering
-------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
fprintf(msgFile, "\n\n solution matrix in original ordering") ;
DenseMtx_writeForHumanEye(mtxX, msgFile) ;
fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
-----------
free memory
-----------
*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
Graph_free(graph) ;
/*--------------------------------------------------------------------*/
return(1) ; }
/*--------------------------------------------------------------------*/
\end{verbatim}
|