File: LU_serial_driver.tex

package info (click to toggle)
spooles 2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,012 kB
  • sloc: ansic: 146,834; csh: 3,615; makefile: 2,040; perl: 74
file content (330 lines) | stat: -rw-r--r-- 11,731 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
\vfill \eject
\section{{\tt allInOne.c} -- A Serial $LU$ Driver Program}
\label{section:LU-serial-driver}

\begin{verbatim}
/*  allInOne.c  */

#include "../../misc.h"
#include "../../FrontMtx.h"
#include "../../SymbFac.h"

/*--------------------------------------------------------------------*/
int
main ( int argc, char *argv[] ) {
/*
   ------------------------------------------------------------------
   all-in-one program to solve A X = Y

   (1) read in matrix entries for A and form InpMtx object
   (2) read in right hand side for Y entries and form DenseMtx object
   (3) form Graph object, order matrix and form front tree
   (4) get the permutation, permute the front tree, matrix 
       and right hand side and get the symbolic factorization
   (5) initialize the front matrix object to hold the factor matrices
   (6) compute the numeric factorization
   (7) post-process the factor matrices
   (8) compute the solution
   (9) permute the solution into the original ordering

   created -- 98jun04, cca
   ------------------------------------------------------------------
*/
/*--------------------------------------------------------------------*/
char            *matrixFileName, *rhsFileName ;
DenseMtx        *mtxY, *mtxX ;
Chv             *rootchv ;
ChvManager      *chvmanager  ;
SubMtxManager   *mtxmanager  ;
FrontMtx        *frontmtx ;
InpMtx          *mtxA ;
double          droptol = 0.0, tau = 100. ;
double          cpus[10] ;
ETree           *frontETree ;
FILE            *inputFile, *msgFile ;
Graph           *graph ;
int             error, ient, irow, jcol, jrhs, jrow, msglvl, ncol, 
                nedges, nent, neqns, nrhs, nrow, pivotingflag, seed, 
                symmetryflag, type ;
int             *newToOld, *oldToNew ;
int             stats[20] ;
IV              *newToOldIV, *oldToNewIV ;
IVL             *adjIVL, *symbfacIVL ;
/*--------------------------------------------------------------------*/
/*
   --------------------
   get input parameters
   --------------------
*/
if ( argc != 9 ) {
   fprintf(stdout, "\n"
      "\n usage: %s msglvl msgFile type symmetryflag pivotingflag"
      "\n        matrixFileName rhsFileName seed"
      "\n    msglvl -- message level"
      "\n    msgFile -- message file"
      "\n    type    -- type of entries"
      "\n      1 (SPOOLES_REAL)    -- real entries"
      "\n      2 (SPOOLES_COMPLEX) -- complex entries"
      "\n    symmetryflag -- type of matrix"
      "\n      0 (SPOOLES_SYMMETRIC)    -- symmetric entries"
      "\n      1 (SPOOLES_HERMITIAN)    -- Hermitian entries"
      "\n      2 (SPOOLES_NONSYMMETRIC) -- nonsymmetric entries"
      "\n    pivotingflag -- type of pivoting"
      "\n      0 (SPOOLES_NO_PIVOTING) -- no pivoting used"
      "\n      1 (SPOOLES_PIVOTING)    -- pivoting used"
      "\n    matrixFileName -- matrix file name, format"
      "\n       nrow ncol nent"
      "\n       irow jcol entry"
      "\n        ..."
      "\n        note: indices are zero based"
      "\n    rhsFileName -- right hand side file name, format"
      "\n       nrow nrhs "
      "\n       ..."
      "\n       jrow entry(jrow,0) ... entry(jrow,nrhs-1)"
      "\n       ..."
      "\n    seed -- random number seed, used for ordering"
      "\n", argv[0]) ;
   return(0) ;
}
msglvl = atoi(argv[1]) ;
if ( strcmp(argv[2], "stdout") == 0 ) {
   msgFile = stdout ;
} else if ( (msgFile = fopen(argv[2], "a")) == NULL ) {
   fprintf(stderr, "\n fatal error in %s"
           "\n unable to open file %s\n",
           argv[0], argv[2]) ;
   return(-1) ;
}
type           = atoi(argv[3]) ;
symmetryflag   = atoi(argv[4]) ;
pivotingflag   = atoi(argv[5]) ;
matrixFileName = argv[6] ;
rhsFileName    = argv[7] ;
seed           = atoi(argv[8]) ;
/*--------------------------------------------------------------------*/
/*
   --------------------------------------------
   STEP 1: read the entries from the input file 
           and create the InpMtx object
   --------------------------------------------
*/
inputFile = fopen(matrixFileName, "r") ;
fscanf(inputFile, "%d %d %d", &nrow, &ncol, &nent) ;
neqns = nrow ;
mtxA = InpMtx_new() ;
InpMtx_init(mtxA, INPMTX_BY_ROWS, type, nent, neqns) ;
if ( type == SPOOLES_REAL ) {
   double   value ;
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le", &irow, &jcol, &value) ;
      InpMtx_inputRealEntry(mtxA, irow, jcol, value) ;
   }
} else {
   double   imag, real ;
   for ( ient = 0 ; ient < nent ; ient++ ) {
      fscanf(inputFile, "%d %d %le %le", &irow, &jcol, &real, &imag) ;
      InpMtx_inputComplexEntry(mtxA, irow, jcol, real, imag) ;
   }
}
fclose(inputFile) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n input matrix") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 2: read the right hand side matrix Y
   -----------------------------------------
*/
inputFile = fopen(rhsFileName, "r") ;
fscanf(inputFile, "%d %d", &nrow, &nrhs) ;
mtxY = DenseMtx_new() ;
DenseMtx_init(mtxY, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxY) ;
if ( type == SPOOLES_REAL ) {
   double   value ;
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le", &value) ;
         DenseMtx_setRealEntry(mtxY, jrow, jrhs, value) ;
      }
   }
} else {
   double   imag, real ;
   for ( irow = 0 ; irow < nrow ; irow++ ) {
      fscanf(inputFile, "%d", &jrow) ;
      for ( jrhs = 0 ; jrhs < nrhs ; jrhs++ ) {
         fscanf(inputFile, "%le %le", &real, &imag) ;
         DenseMtx_setComplexEntry(mtxY, jrow, jrhs, real, imag) ;
      }
   }
}
fclose(inputFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n rhs matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxY, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------
   STEP 3 : find a low-fill ordering
   (1) create the Graph object
   (2) order the graph using multiple minimum degree
   -------------------------------------------------
*/
graph = Graph_new() ;
adjIVL = InpMtx_fullAdjacency(mtxA) ;
nedges = IVL_tsize(adjIVL) ;
Graph_init2(graph, 0, neqns, 0, nedges, neqns, nedges, adjIVL,
            NULL, NULL) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n graph of the input matrix") ;
   Graph_writeForHumanEye(graph, msgFile) ;
   fflush(msgFile) ;
}
frontETree = orderViaMMD(graph, seed, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n front tree from ordering") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ----------------------------------------------------
   STEP 4: get the permutation, permute the front tree,
           permute the matrix and right hand side, and 
           get the symbolic factorization
   ----------------------------------------------------
*/
oldToNewIV = ETree_oldToNewVtxPerm(frontETree) ;
oldToNew   = IV_entries(oldToNewIV) ;
newToOldIV = ETree_newToOldVtxPerm(frontETree) ;
newToOld   = IV_entries(newToOldIV) ;
ETree_permuteVertices(frontETree, oldToNewIV) ;
InpMtx_permute(mtxA, oldToNew, oldToNew) ;
if (  symmetryflag == SPOOLES_SYMMETRIC
   || symmetryflag == SPOOLES_HERMITIAN ) {
   InpMtx_mapToUpperTriangle(mtxA) ;
}
InpMtx_changeCoordType(mtxA, INPMTX_BY_CHEVRONS) ;
InpMtx_changeStorageMode(mtxA, INPMTX_BY_VECTORS) ;
DenseMtx_permuteRows(mtxY, oldToNewIV) ;
symbfacIVL = SymbFac_initFromInpMtx(frontETree, mtxA) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n old-to-new permutation vector") ;
   IV_writeForHumanEye(oldToNewIV, msgFile) ;
   fprintf(msgFile, "\n\n new-to-old permutation vector") ;
   IV_writeForHumanEye(newToOldIV, msgFile) ;
   fprintf(msgFile, "\n\n front tree after permutation") ;
   ETree_writeForHumanEye(frontETree, msgFile) ;
   fprintf(msgFile, "\n\n input matrix after permutation") ;
   InpMtx_writeForHumanEye(mtxA, msgFile) ;
   fprintf(msgFile, "\n\n right hand side matrix after permutation") ;
   DenseMtx_writeForHumanEye(mtxY, msgFile) ;
   fprintf(msgFile, "\n\n symbolic factorization") ;
   IVL_writeForHumanEye(symbfacIVL, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   ------------------------------------------
   STEP 5: initialize the front matrix object
   ------------------------------------------
*/
frontmtx   = FrontMtx_new() ;
mtxmanager = SubMtxManager_new() ;
SubMtxManager_init(mtxmanager, NO_LOCK, 0) ;
FrontMtx_init(frontmtx, frontETree, symbfacIVL, type, symmetryflag, 
              FRONTMTX_DENSE_FRONTS, pivotingflag, NO_LOCK, 0, NULL, 
              mtxmanager, msglvl, msgFile) ;
/*--------------------------------------------------------------------*/
/*
   -----------------------------------------
   STEP 6: compute the numeric factorization
   -----------------------------------------
*/
chvmanager = ChvManager_new() ;
ChvManager_init(chvmanager, NO_LOCK, 1) ;
DVfill(10, cpus, 0.0) ;
IVfill(20, stats, 0) ;
rootchv = FrontMtx_factorInpMtx(frontmtx, mtxA, tau, droptol, 
             chvmanager, &error, cpus, stats, msglvl, msgFile) ;
ChvManager_free(chvmanager) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n factor matrix") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
if ( rootchv != NULL ) {
   fprintf(msgFile, "\n\n matrix found to be singular\n") ;
   exit(-1) ;
}
if ( error >= 0 ) {
   fprintf(msgFile, "\n\n error encountered at front %d", error) ;
   exit(-1) ;
}
/*--------------------------------------------------------------------*/
/*
   --------------------------------------
   STEP 7: post-process the factorization
   --------------------------------------
*/
FrontMtx_postProcess(frontmtx, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n factor matrix after post-processing") ;
   FrontMtx_writeForHumanEye(frontmtx, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------
   STEP 8: solve the linear system
   -------------------------------
*/
mtxX = DenseMtx_new() ;
DenseMtx_init(mtxX, type, 0, 0, neqns, nrhs, 1, neqns) ;
DenseMtx_zero(mtxX) ;
FrontMtx_solve(frontmtx, mtxX, mtxY, mtxmanager, 
               cpus, msglvl, msgFile) ;
if ( msglvl > 2 ) {
   fprintf(msgFile, "\n\n solution matrix in new ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -------------------------------------------------------
   STEP 9: permute the solution into the original ordering
   -------------------------------------------------------
*/
DenseMtx_permuteRows(mtxX, newToOldIV) ;
if ( msglvl > 0 ) {
   fprintf(msgFile, "\n\n solution matrix in original ordering") ;
   DenseMtx_writeForHumanEye(mtxX, msgFile) ;
   fflush(msgFile) ;
}
/*--------------------------------------------------------------------*/
/*
   -----------
   free memory
   -----------
*/
FrontMtx_free(frontmtx) ;
DenseMtx_free(mtxX) ;
DenseMtx_free(mtxY) ;
IV_free(newToOldIV) ;
IV_free(oldToNewIV) ;
InpMtx_free(mtxA) ;
ETree_free(frontETree) ;
IVL_free(symbfacIVL) ;
SubMtxManager_free(mtxmanager) ;
Graph_free(graph) ;
/*--------------------------------------------------------------------*/
return(1) ; }
/*--------------------------------------------------------------------*/
\end{verbatim}