1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
|
\par
\section{Driver programs found in the {\tt Misc} directory}
\label{section:Misc:drivers}
\par
This section contains brief descriptions of the driver programs.
\par
%=======================================================================
\begin{enumerate}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
testNDperm msglvl msgFile n1 n2 n3 outPermFile
\end{verbatim}
This driver program generates a {\tt Perm} object that contains a
nested dissection ordering for a {\tt n1 x n2 x n3} regular grid.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
{\tt n1} is the number of points in the first direction.
\item
{\tt n2} is the number of points in the second direction.
\item
{\tt n3} is the number of points in the third direction.
\item
The {\tt outPermFile} parameter is the output file for the {\tt Perm}
object.
If {\tt outPermFile} is {\tt none} then the {\tt Perm} object is not
written to a file.
Otherwise, the {\tt Perm\_writeToFile()} method is called to write
the object to
a formatted file (if {\tt outPermFile} is of the form {\tt *.permf}),
or
a binary file (if {\tt outPermFile} is of the form {\tt *.permb}).
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
testOrderViaMMD msglvl msgFile GraphFile seed ETreeFile
\end{verbatim}
This program reads in a {\tt Graph} object from a file and computes
a multiple minimum degree ordering of the graph.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt inGraphFile} parameter is the input file for the {\tt Graph}
object. It must be of the form {\tt *.graphf} or {\tt *.graphb}.
The {\tt Graph} object is read from the file via the
{\tt Graph\_readFromFile()} method.
\item
The {\tt seed} parameter is a random number seed.
\item
The {\tt ETreeFile} parameter is the output file for the {\tt ETree}
object.
If {\tt ETreeFile} is {\tt none} then the {\tt ETree} object is not
written to a file.
Otherwise, the {\tt ETree\_writeToFile()} method is called to write
the object to
a formatted file (if {\tt ETreeFile} is of the form {\tt *.etreef}),
or
a binary file (if {\tt ETreeFile} is of the form {\tt *.etreeb}).
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
testOrderViaND msglvl msgFile GraphFile maxdomainsize seed ETreeFile
\end{verbatim}
This program reads in a {\tt Graph} object from a file and computes
a generalized nested dissection ordering of the graph.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt inGraphFile} parameter is the input file for the {\tt Graph}
object. It must be of the form {\tt *.graphf} or {\tt *.graphb}.
The {\tt Graph} object is read from the file via the
{\tt Graph\_readFromFile()} method.
\item
The {\tt maxdomainsize} parameter governs the partition of a graph.
If a subgraph has more than {\tt maxdomainsize} vertices, it is
split.
\item
The {\tt seed} parameter is a random number seed.
\item
The {\tt ETreeFile} parameter is the output file for the {\tt ETree}
object.
If {\tt ETreeFile} is {\tt none} then the {\tt ETree} object is not
written to a file.
Otherwise, the {\tt ETree\_writeToFile()} method is called to write
the object to
a formatted file (if {\tt ETreeFile} is of the form {\tt *.etreef}),
or
a binary file (if {\tt ETreeFile} is of the form {\tt *.etreeb}).
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
testOrderViaMS msglvl msgFile GraphFile maxdomainsize seed ETreeFile
\end{verbatim}
This program reads in a {\tt Graph} object from a file and computes
a multisection ordering of the graph.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt inGraphFile} parameter is the input file for the {\tt Graph}
object. It must be of the form {\tt *.graphf} or {\tt *.graphb}.
The {\tt Graph} object is read from the file via the
{\tt Graph\_readFromFile()} method.
\item
The {\tt maxdomainsize} parameter governs the partition of a graph.
If a subgraph has more than {\tt maxdomainsize} vertices, it is
split.
\item
The {\tt seed} parameter is a random number seed.
\item
The {\tt ETreeFile} parameter is the output file for the {\tt ETree}
object.
If {\tt ETreeFile} is {\tt none} then the {\tt ETree} object is not
written to a file.
Otherwise, the {\tt ETree\_writeToFile()} method is called to write
the object to
a formatted file (if {\tt ETreeFile} is of the form {\tt *.etreef}),
or
a binary file (if {\tt ETreeFile} is of the form {\tt *.etreeb}).
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
drawGraph msglvl msgFile inGraphFile inCoordsFile inTagsIVfile
outEPSfile linewidth1 linewidth2 bbox[4] rect[4] radius
\end{verbatim}
This driver program generates a Encapsulated Postscript file
{\tt outEPSfile} of a 2-D graph using a {\tt Graph} object,
a {\tt Coords} object and a tags {\tt IV} object that contains the
component ids of the vertices.
\par
See the {\tt doDraw} script file in this directory for an example
calling sequence.
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means that all objects are written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt inGraphFile} parameter is the input file for the {\tt Graph}
object. It must be of the form {\tt *.graphf} or {\tt *.graphb}.
The {\tt Graph} object is read from the file via the
{\tt Graph\_readFromFile()} method.
\item
The {\tt inCoordsFile} parameter is the input file for the {\tt Coords}
object. It must be of the form {\tt *.coordsf} or {\tt *.coordsb}.
The {\tt Coords} object is read from the file via the
{\tt Coords\_readFromFile()} method.
\item
The {\tt inTagsIVfile} parameter is the input file for the tags
{\tt IV} object.
It must be of the form {\tt 'none'}, {\tt *.ivf} or {\tt *.ivb}.
The {\tt IV} object is read from the file via the
{\tt IV\_readFromFile()} method.
\item
The {\tt outEPSfile} parameter is the output file for the Encapsulated
Postscript file.
\item
The {\tt linewidth1} parameter governs the linewidth of edges
between vertices in the same component.
\item
The {\tt linewidth2} parameter governs the linewidth of edges
between vertices in different components.
\item
The {\tt bbox[4]} array is the bounding box for the plot.
In Postscript the coordinates are in {\it points}, where there are
72 points per inch.
For example, a bounding box of {\tt 0 0 200 300} will create a plot
whose size is 2.78 inches by 4.17 inches.
\item
The {\tt rect[4]} array is the enclosing rectangle for the plot.
To put a 20 point margin around the plot, set
{\tt rect[0] = bbox[0] + 20},
{\tt rect[1] = bbox[1] + 20},
{\tt rect[2] = bbox[2] - 20} and
{\tt rect[3] = bbox[3] - 20}.
\item
The {\tt radius} parameter governs the size of the filled circle
that is centered on each vertex.
The dimension is in points.
\end{itemize}
See Figure~\ref{fig-R2D100} for a plot of the graph of {\tt R2D100},
a randomly triangulated grid with 100 vertices with {\tt linewidth1
= 3}.
Figure~\ref{fig-R2D100-fishnet} illustrates a domain decomposition
obtained from the fishnet algorithm
of Chapter~\ref{chapter:GPart:intro}
with {\tt linewidth1 = 3} and {\tt linewidth2 = 0.1}.
\par
\begin{figure}[htbp]
\caption{{\sc R2D100}}
\label{fig-R2D100}
\begin{center}
\mbox{
% \psfig{file=R2D100notags.eps,height=4.00in,width=4.00in}
\psfig{file=../../misc/doc/R2D100notags.eps,height=4.00in,width=4.00in}
}
\end{center}
\end{figure}
\par
\begin{figure}[htbp]
\caption{{\sc R2D100: fishnet domain decomposition}}
\label{fig-R2D100-fishnet}
\begin{center}
\mbox{
% \psfig{file=R2D100fishnet.eps,height=4.00in,width=4.00in}
\psfig{file=../../misc/doc/R2D100fishnet.eps,height=4.00in,width=4.00in}
}
\end{center}
\end{figure}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
testSemi msglvl msgFile GraphFile ETreeFile mapFile
\end{verbatim}
This program is used to compute the effect of using a semi-implicit
factorization to solve
$$
AX =
\left \lbrack \begin{array}{cc}
A_{0,0} & A_{0,1} \cr
A_{1,0} & A_{1,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{c}
X_0 \cr
X_1
\end{array} \right \rbrack
=
\left \lbrack \begin{array}{c}
B_0 \cr
B_1
\end{array} \right \rbrack
= B.
$$
$A$ is factored as
$$
\left \lbrack \begin{array}{cc}
A_{0,0} & A_{0,1} \cr
A_{1,0} & A_{1,1}
\end{array} \right \rbrack
=
\left \lbrack \begin{array}{cc}
L_{0,0} & 0 \cr
L_{1,0} & L_{1,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
U_{0,0} & U_{0,1} \cr
0 & U_{1,1}
\end{array} \right \rbrack,
$$
and to solve $AX = B$, we do the following steps.
\begin{itemize}
\item solve $L_{0,0} Y_0 = B_0$
\item solve $L_{1,1} U_{1,1} X_1 = B_1 - L_{1,0} Y_0$
\item solve $U_{0,0} X_0 = Y_0 - U_{0,1} X_1$
\end{itemize}
An alternative factorization is
$$
A =
\left \lbrack \begin{array}{cc}
L_{0,0} & 0 \cr
A_{1,0}U_{0,0}^{-1} & L_{1,1}
\end{array} \right \rbrack
\left \lbrack \begin{array}{cc}
U_{0,0} & L_{0,0}^{-1}U_{0,1} \cr
0 & U_{1,1}
\end{array} \right \rbrack.
$$
To solve $AX = B$, we do the following {\it semi-implicit solve}.
\begin{itemize}
\item solve $L_{0,0} U_{0,0} Z_0 = B_0$
\item solve $L_{1,1} U_{1,1} X_1 = B_1 - A_{1,0} Z_0$
\item solve $L_{0,0} U_{0,0} X_0 = B_0 - A_{0,1} X_1$
\end{itemize}
When we compare the semi-implicit solve against the explicit solve,
we see that the former needs
$A_{0,1}$ and $A_{1,0}$ but not $L_{1,0}$ or $A_{0,1}$.
and executes two solves with $L_{0,0}$ and $U_{0,0}$ (instead of one)
and performs a matrix-matrix multiply with $A_{0,1}$ and $A_{1,0}$
instead of $L_{1,0}$ and $U_{0,1}$.
In situations where the numbers of entries in $L_{1,0}$ and
$U_{0,1}$ are much larger than those in $A_{1,0}$ and $A_{0,1}$,
and the numbers of entries in $L_{0,0}$ and $U_{0,0}$ are not too
large, the semi-implicit factorization can be more efficient.
\par
This program reads in three objects:
a {\tt Graph} object,
an {\tt ETree} object to specify the ordering,
and an {\tt IV} map object that tells which vertices are in the
which blocks of the matrix.
The map from vertices to blocks follows the same convention as the
{\it component map} from the {\tt GPart} object.
If {\tt map[v] = 0}, then vertex {\tt v} belongs to the Schur
complement $(1,1)$ block.
Otherwise, {\tt v} belongs to a domain (the domain number is {\tt
map[v]}) and so belongs to the $(0,0)$ block.
The output of the program gives statistics for storage and
operation count for the two types of solves.
For example,
\begin{verbatim}
storage: explicit = 1404, semi-implicit = 1063, ratio = 1.321
opcount: explicit = 2808, semi-implicit = 2742, ratio = 1.024
\end{verbatim}
is the output using the {\tt do\_testSemi} driver program for
the {\tt R2D100} matrix.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt GraphFile} parameter is the input file for the {\tt Graph}
object. It must be of the form {\tt *.graphf} or {\tt *.graphb}.
The {\tt Graph} object is read from the file via the
{\tt Graph\_readFromFile()} method.
\item
The {\tt ETreeFile} parameter is the input file for the {\tt ETree}
object. It must be of the form {\tt *.etreef} or {\tt *.etreeb}.
The {\tt ETree} object is read from the file via the
{\tt ETree\_readFromFile()} method.
\item
The {\tt mapFile} parameter is the input file for the map {\tt IV}
object. It must be of the form {\tt *.ivf} or {\tt *.ivb}.
The {\tt IV} object is read from the file via the
{\tt IV\_readFromFile()} method.
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
allInOne msglvl msgFile type symmetryflag pivotingflag
matrixFileName rhsFileName seed
\end{verbatim}
This {\it all-in-one} driver program is an example that tests the
serial $U^TDU$, $U^HDU$ or $LU$ factorization and solve.
Matrix entries are read in from a file, and then the matrix
is assembled and factored.
The right hand side entries are read in from a file, and the system
is solved.
Three input parameters specify the type of system (real or
complex),
the type of factorization (symmetric, Hermitian or nonsymmetric)
and whether pivoting is to be used for numerical stability.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
{\tt type} is the type of entries
\begin{itemize}
\item {\tt 1} --- ({\tt SPOOLES\_REAL}) for real entries
\item {\tt 2} --- ({\tt SPOOLES\_COMPLEX}) for complex entries
\end{itemize}
\item
{\tt symmetryflag} defines the factorization
\begin{itemize}
\item {\tt 0} --- ({\tt SPOOLES\_SYMMETRIC})
for a real or complex $U^TDU$ factorization
\item {\tt 1} --- ({\tt SPOOLES\_SYMMETRIC})
for a complex $U^HDU$ factorization
\item {\tt 2} --- ({\tt SPOOLES\_SYMMETRIC})
for a real or complex $LU$ factorization
\end{itemize}
\item
{\tt pivotingflag} defines pivoting or not for numerical stability
\begin{itemize}
\item {\tt 0} --- ({\tt SPOOLES\_NO\_PIVOTING}) for no pivoting
\item {\tt 1} --- ({\tt SPOOLES\_PIVOTING}) for pivoting
\end{itemize}
Note, the code has a pivoting threshold {\tt tau = 100} hardwired
into the code.
\item
The {\tt matrixFileName} parameter is the name of the input file
for the matrix entries.
For a real matrix, this file must have the following form.
\begin{verbatim}
nrow ncol nent
...
irow jcol value
...
\end{verbatim}
where the first line has the number of rows, columns and entries.
(Note, for this driver program {\tt nrow} must be equal to {\tt ncol}
since we are factoring a square matrix.)
Each of the {\tt nent} following lines contain one nonzero entry.
For a complex matrix, the file has this structure.
\begin{verbatim}
nrow ncol nent
...
irow jcol real_value imag_value
...
\end{verbatim}
For both real and complex entries, the entries need not be
disjoint,
i.e., entries with the same {\tt irow} and {\tt jcol} values are
{\it summed}.
\item
The {\tt rhsFileName} parameter is the name of the input file for
the right hand side matrix.
It has the following structure
\begin{verbatim}
nrow nrhs
...
irow value_0 value_1 ... value_\{nrhs-1\}
...
\end{verbatim}
Note, {\tt nrow} need not be the number of equations, here it is
the number of nonzero right hand side entries.
This allows us to input sparse right hand sides without specifying
the zeroes.
In contrast to the input for the matrix entries, the nonzero rows
{\it must} be unique.
The right hand side entries are not assembled into a dense matrix
object, but placed into the object.
\item
{\tt seed} is a random number seed used for the ordering process.
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
patchAndGo msglvl msgFile type symmetryflag patchAndGoFlag fudge toosmall
storeids storevalues matrixFileName rhsFileName seed
\end{verbatim}
This driver program is used to test the ``patch-and-go''
functionality for a factorization without pivoting.
When small diagonal pivot elements are found,
one of three actions are taken.
See the {\tt PatchAndGoInfo} object for more information.
\par
The program reads in a matrix $A$ and right hand side $B$,
generates the graph for $A$ and orders the matrix,
factors $A$ and solves the linear system $AX = B$ for $X$
using multithreaded factors and solves.
Use the script file {\tt do\_patchAndGo} for testing.
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output.
Use {\tt msglvl = 1} for just timing output.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
The {\tt type} parameter specifies a real or complex linear system.
\begin{itemize}
\item
{\tt type = 1 (SPOOLES\_REAL)} for real,
\item
{\tt type = 2 (SPOOLES\_COMPLEX)} for complex.
\end{itemize}
\item
The {\tt symmetryflag} parameter specifies the symmetry of the matrix.
\begin{itemize}
\item
{\tt type = 0 (SPOOLES\_SYMMETRIC)} for $A$ real or complex symmetric,
\item
{\tt type = 1 (SPOOLES\_HERMITIAN)} for $A$ complex Hermitian,
\item
{\tt type = 2 (SPOOLES\_NONSYMMETRIC)}
\end{itemize}
for $A$ real or complex nonsymmetric.
\item
The {\tt patchAndGoFlag} specifies the ``patch-and-go'' strategy.
\begin{itemize}
\item
{\tt patchAndGoFlag = 0} --- if a zero pivot is detected, stop
computing the factorization, set the error flag and return.
\item
{\tt patchAndGoFlag = 1} --- if a small or zero pivot is detected,
set the diagonal entry to 1 and the offdiagonal entries to zero.
\item
{\tt patchAndGoFlag = 2} --- if a small or zero pivot is detected,
perturb the diagonal entry.
\end{itemize}
\item
The {\tt fudge} parameter is used to perturb a diagonal entry.
\item
The {\tt toosmall} parameter is judge when a diagonal entry is small.
\item
If {\tt storeids = 1}, then the locations where action was taken is
stored in an {\tt IV} object.
\item
If {\tt storevalues = 1}, then the perturbations are
stored in an {\tt DV} object.
\item
The {\tt matrixFileName} parameter is the name of the files where
the matrix entries are read from.
The file has the following structure.
\begin{verbatim}
neqns neqns nent
irow jcol entry
... ... ...
\end{verbatim}
where {\tt neqns} is the global number of equations and {\tt nent}
is the number of entries in this file.
There follows {\tt nent} lines, each containing a row index, a
column index and one or two floating point numbers, one if real,
two if complex.
\item
The {\tt rhsFileName} parameter is the name of the files where
the right hand side entries are read from.
The file has the following structure.
\begin{verbatim}
nrow nrhs
irow entry ... entry
... ... ... ...
\end{verbatim}
where {\tt nrow} is the number of rows in this file
and {\tt nrhs} is the number of rigght and sides.
There follows {\tt nrow} lines, each containing a row index
and either {\tt nrhs} or {\tt 2*nrhs} floating point numbers,
the first if real, the second if complex.
\item
The {\tt seed} parameter is a random number seed.
\end{itemize}
%-----------------------------------------------------------------------
\item
\begin{verbatim}
QRallInOne msglvl msgFile type matrixFileName rhsFileName seed
\end{verbatim}
This {\it all-in-one} driver program is an example that tests the
serial $QR$ factorization and solve.
Matrix entries are read in from a file, and then the matrix
is assembled and factored.
The right hand side entries are read in from a file, and the system
is solved.
One input parameter specifies the type of system (real or
complex).
\par
\begin{itemize}
\item
The {\tt msglvl} parameter determines the amount of output ---
taking {\tt msglvl >= 3} means the {\tt Perm} object is written
to the output file.
\item
The {\tt msgFile} parameter determines the message file --- if {\tt
msgFile} is {\tt stdout}, then the message file is {\it stdout},
otherwise a file is opened with {\it append} status to receive any
output data.
\item
{\tt type} is the type of entries
\begin{itemize}
\item {\tt 1} --- ({\tt SPOOLES\_REAL}) for real entries
\item {\tt 2} --- ({\tt SPOOLES\_COMPLEX}) for complex entries
\end{itemize}
\item
The {\tt matrixFileName} parameter is the name of the input file
for the matrix entries.
For a real matrix, this file must have the following form.
\begin{verbatim}
nrow ncol nent
...
irow jcol value
...
\end{verbatim}
where the first line has the number of rows, columns and entries.
Each of the {\tt nent} following lines contain one nonzero entry.
For a complex matrix, the file has this structure.
\begin{verbatim}
nrow nrhs nent
...
irow jcol real_value imag_value
...
\end{verbatim}
For both real and complex entries, the entries need not be
disjoint,
i.e., entries with the same {\tt irow} and {\tt jcol} values are
{\it summed}.
\item
The {\tt rhsFileName} parameter is the name of the input file for
the right hand side matrix.
It has the following structure
\begin{verbatim}
nrow nrhs
...
irow value_0 value_1 ... value_\{nrhs-1\}
...
\end{verbatim}
Note, {\tt nrow} need not be the number of equations, here it is
the number of nonzero right hand side entries.
This allows us to input sparse right hand sides without specifying
the zeroes.
In contrast to the input for the matrix entries, the nonzero rows
{\it must} be unique.
The right hand side entries are not assembled into a dense matrix
object, but placed into the object.
\item
{\tt seed} is a random number seed used for the ordering process.
\end{itemize}
%-----------------------------------------------------------------------
\end{enumerate}
|