File: QuadRenderData.cpp

package info (click to toggle)
spring 0.81.2.1%2Bdfsg1-6
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,496 kB
  • ctags: 37,096
  • sloc: cpp: 238,659; ansic: 13,784; java: 12,175; awk: 3,428; python: 1,159; xml: 738; perl: 405; sh: 297; makefile: 267; pascal: 228; objc: 192
file content (259 lines) | stat: -rw-r--r-- 6,191 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*---------------------------------------------------------------------
 Terrain Renderer using texture splatting and geomipmapping

 Copyright (2006) Jelmer Cnossen
 This code is released under GPL license (See LICENSE.html for info)
---------------------------------------------------------------------*/

#include "StdAfx.h"
#include <cstring>
#include <assert.h>
#include "Rendering/GL/myGL.h"

#include "TerrainBase.h"
#include "TerrainNode.h"
#include "TerrainTexture.h"

namespace terrain {
	using namespace std;

	QuadRenderData::QuadRenderData()
	{
		quad=0;
		used=false;
		vertexSize=0;

		normalMap=0;
		normalMapW=0;
		normalMapTexWidth=0;
		vertexSize=0;
		index=0;
	}

	QuadRenderData::~QuadRenderData()
	{
		// delete normal map
		if (normalMap) {
			glDeleteTextures(1,&normalMap);
			normalMap = 0;
		}
	}

	uint QuadRenderData::GetDataSize ()
	{
		return normalMapW * normalMapW * 3 + vertexBuffer.GetSize ();
	}

	RenderDataManager::RenderDataManager(Heightmap *rhm, QuadMap *rqm)
		: roothm(rhm), rootQMap (rqm)
	{
		renderDataAllocates=0;
	}

	RenderDataManager::~RenderDataManager()
	{
		for (size_t a=0;a<freeRD.size();a++)
			delete freeRD[a];
		for (size_t a=0;a<qrd.size();a++)
			delete qrd[a];
	}

	QuadRenderData *RenderDataManager::Allocate()
	{
		QuadRenderData *rd;
		if (!freeRD.empty()) {
			rd = freeRD.back();
			freeRD.pop_back();
		}
		else rd = new QuadRenderData;

		rd->index = qrd.size();
		qrd.push_back (rd);

		renderDataAllocates++;

		return rd;
	}

	void RenderDataManager::PruneFreeList (int maxFreeRD)
	{
		const size_t maxFreeRDUnsigned = (maxFreeRD < 0) ? 0 : maxFreeRD;
		while (freeRD.size() > maxFreeRDUnsigned) {
			delete freeRD.back();
			freeRD.pop_back ();
		}
	}

	void RenderDataManager::Free (QuadRenderData *rd)
	{
		if (rd->index < qrd.size()-1) {
			qrd.back()->index = rd->index;
			std::swap (qrd.back(), qrd[rd->index]);
		}
		qrd.pop_back();

		freeRD.push_back (rd);
		rd->GetQuad()->renderData = 0;

		rd->GetQuad()->FreeCachedTexture();
	}

	void RenderDataManager::UpdateRect (int sx,int sy,int w,int h)
	{
		vector<QuadRenderData*> remain;
		for (size_t a=0;a<qrd.size();a++)
		{
			QuadRenderData *rd = qrd[a];
			TQuad *q = rd->GetQuad();

			// rect vs rect collision:
			if (q->sqPos.x + q->width >= sx && q->sqPos.y + q->width >= sy &&
				q->sqPos.x <= sx + w && q->sqPos.y <= sy + h)
			{
				assert (q->renderData==qrd[a]);
				Free(q->renderData);
			}
		}
	}

	// delete all renderdata that is not used this frame and has maxlod < VBufMinDetail
	void RenderDataManager::FreeUnused ()
	{
		for (int a=0;a<qrd.size();a++)
		{
			QuadRenderData *rd = qrd[a];

			if (rd->used) {
				rd->used = false;
				continue;
			}

			if (rd->GetQuad()->maxLodValue < VBufMinDetail) {
				Free (rd);
				a--;
			}
		}
	}

	void RenderDataManager::InitializeNode (TQuad *q)
	{
		assert (!q->renderData);

		QuadRenderData *rd = q->renderData = Allocate ();

		// Allocate vertex data space
		const size_t vertexSize = q->GetVertexSize ();
		if (static_cast<int>(vertexSize) != rd->vertexSize) {
			const size_t size = NUM_VERTICES * vertexSize;

			if (rd->vertexBuffer.GetSize () != size) {
				rd->vertexBuffer.Init (size);
			}
			rd->vertexSize = vertexSize;
		}

		// build the vertex buffer
		Vector3 *v = (Vector3*)rd->vertexBuffer.LockData ();

		uint vda = q->textureSetup->vertexDataReq; 		// vertex data requirements
		Heightmap *hm = roothm->GetLevel (q->depth); // get the right heightmap level

		for(int y=q->hmPos.y;y<=q->hmPos.y+QUAD_W;y++)
			for(int x=q->hmPos.x;x<=q->hmPos.x+QUAD_W;x++)
			{
				*(v++) = Vector3(x * hm->squareSize, hm->HeightAt (x,y), y * hm->squareSize);

				Vector3 tangent, binormal;
				CalculateTangents (hm, x,y, tangent, binormal);
				Vector3 normal = binormal.cross(tangent);
				normal.ANormalize ();

				if (vda & VRT_Normal)
					*(v++) = normal;

				if (vda & VRT_TangentSpaceMatrix)
				{
					tangent.ANormalize ();
					binormal.ANormalize ();

					// orthonormal matrix, so inverse=transpose
					// Take the inverse of the tangent space -> world space transformation
					Vector3* tgs2ws = v;
					tgs2ws[0] = Vector3(tangent.x, binormal.x, normal.x);
					tgs2ws[1] = Vector3(tangent.y, binormal.y, normal.y);
					tgs2ws[2] = Vector3(tangent.z, binormal.z, normal.z);
					v+=3;
				}
			}
		rd->vertexBuffer.UnlockData ();
		rd->SetQuad(q);
	}


	void RenderDataManager::InitializeNodeNormalMap (TQuad *q, int cfgNormalMapLevel)
	{
		QuadRenderData *rd = q->renderData;

		if (q->isLeaf()) {
			if (rd->normalMap) {
				glDeleteTextures(1,&rd->normalMap);
				rd->normalMap = 0;
				rd->normalMapW = 0;
			}
			return;
		}

		// find the right level heightmap to generate the normal map from
		Heightmap *hm = roothm;
		int level = 0;
		for (;hm->highDetail;hm = hm->highDetail, level++)
			if (level == q->depth + cfgNormalMapLevel) break;

		// calculate dimensions
		const int scale = 1 << (level - q->depth);
		size_t w = QUAD_W * scale + 1;
		const size_t h = w;
		const int startx = q->hmPos.x * scale;

		// use power-of-two texture sizes if required
		size_t texw = 1;
		//if (GLEW_ARB_texture_non_power_of_two) texw = w;
		//else
		while (texw < w) texw *= 2;

		// if not yet created, create a texture for it
		GLuint texture;

		if (rd->normalMap && rd->normalMapW == w && rd->normalMapTexWidth == texw) {
			texture = rd->normalMap;
			glBindTexture (GL_TEXTURE_2D, texture);
		} else {
			if (rd->normalMap)
				glDeleteTextures(1,&rd->normalMap);

			glGenTextures (1, &texture);
			glBindTexture (GL_TEXTURE_2D, texture);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
			glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

			rd->normalMap = texture;
			rd->normalMapW = w;
			rd->normalMapTexWidth = texw;
		}

		// allocate temporary storage for normals
		uchar *normals = new uchar[texw*texw*3];

		// calculate normals
		for (size_t y=0; y<h; y++) {
			uchar *src = hm->GetNormal (startx,y + q->hmPos.y * scale);
			memcpy (&normals [3 * y * texw], src, 3 * w);
		}

		// fill texture
		glTexImage2D (GL_TEXTURE_2D, 0, 3, texw,texw,0, GL_RGB, GL_UNSIGNED_BYTE, normals);

		delete[] normals;
	}

};