File: CollisionHandler.cpp

package info (click to toggle)
spring 0.81.2.1%2Bdfsg1-6
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 28,496 kB
  • ctags: 37,096
  • sloc: cpp: 238,659; ansic: 13,784; java: 12,175; awk: 3,428; python: 1,159; xml: 738; perl: 405; sh: 297; makefile: 267; pascal: 228; objc: 192
file content (740 lines) | stat: -rw-r--r-- 22,465 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
#include "StdAfx.h"
#include "mmgr.h"

#include "FastMath.h"
#include "float3.h"
#include "Matrix44f.h"

#include "Sim/Units/Unit.h"
#include "Sim/Features/Feature.h"
#include "GroundBlockingObjectMap.h"

#include "GlobalSynced.h"
#include "GlobalConstants.h"

#include "CollisionHandler.h"
#include "CollisionVolume.h"

#define ZVEC ZeroVector

CR_BIND(CCollisionHandler, );

unsigned int CCollisionHandler::numCollisionTests = 0;
unsigned int CCollisionHandler::numIntersectionTests = 0;



bool CCollisionHandler::DetectHit(const CUnit* u, const float3& p0, const float3& p1, CollisionQuery* q)
{
	bool r = false;

	if (u->unitDef->usePieceCollisionVolumes) {
		// test only for ray intersections with the piece tree
		return (CCollisionHandler::IntersectPieceTree(u, p0, p1, q));
	}

	if (!u->collisionVolume->IsDisabled()) {
		switch (u->collisionVolume->GetTestType()) {
			// Collision(CUnit*) does not need p1 or q
			case COLVOL_TEST_DISC: { r = CCollisionHandler::Collision(u, p0       ); numCollisionTests    += 1; } break;
			case COLVOL_TEST_CONT: { r = CCollisionHandler::Intersect(u, p0, p1, q); numIntersectionTests += 1; } break;
		}
	}

	return r;
}

bool CCollisionHandler::DetectHit(const CFeature* f, const float3& p0, const float3& p1, CollisionQuery* q)
{
	bool r = false;

	if (!f->collisionVolume->IsDisabled()) {
		switch (f->collisionVolume->GetTestType()) {
			// Collision(CFeature*) does not need p1 or q
			case COLVOL_TEST_DISC: { r = CCollisionHandler::Collision(f, p0       ); numCollisionTests    += 1; } break;
			case COLVOL_TEST_CONT: { r = CCollisionHandler::Intersect(f, p0, p1, q); numIntersectionTests += 1; } break;
		}
	}

	return r;
}






bool CCollisionHandler::Collision(const CUnit* u, const float3& p)
{
	const CollisionVolume* v = u->collisionVolume;

	if (((u->midPos + v->GetOffsets()) - p).SqLength() > v->GetBoundingRadiusSq()) {
		return false;
	}

	switch (u->collisionVolume->GetVolumeType()) {
		case COLVOL_TYPE_SPHERE: {
			return true;
		}
		case COLVOL_TYPE_FOOTPRINT: {
			return CCollisionHandler::CollisionFootprint(u, p);
		}
		default: {
			// NOTE: we have to translate by relMidPos to get to midPos
			// (which is where the collision volume gets drawn) because
			// GetTransformMatrix() only uses pos
			CMatrix44f m = u->GetTransformMatrix(true);
			m.Translate(u->relMidPos);
			m.Translate(v->GetOffsets());

			return CCollisionHandler::Collision(v, m, p);
		}
	}
}


bool CCollisionHandler::Collision(const CFeature* f, const float3& p)
{
	const CollisionVolume* v = f->collisionVolume;

	if (((f->midPos + v->GetOffsets()) - p).SqLength() > v->GetBoundingRadiusSq()) {
		return false;
	}

	switch (f->collisionVolume->GetVolumeType()) {
		case COLVOL_TYPE_SPHERE: {
			return true;
		}
		case COLVOL_TYPE_FOOTPRINT: {
			return CCollisionHandler::CollisionFootprint(f, p);
		}
		default: {
			// NOTE: CFeature does not have a relMidPos member so
			// calculate and apply the translation from pos (used
			// by transMatrix) to midPos manually
			const float3 relMidPos(f->midPos - f->pos);

			CMatrix44f m(f->transMatrix);
			m.Translate(relMidPos);
			m.Translate(v->GetOffsets());

			return CCollisionHandler::Collision(v, m, p);
		}
	}
}


bool CCollisionHandler::CollisionFootprint(const CSolidObject* o, const float3& p)
{
	if (o->isMarkedOnBlockingMap && o->physicalState != CSolidObject::Flying) {
		const float invSquareSize = 1.0f / SQUARE_SIZE;
		const int square = int(p.x * invSquareSize) + int(p.z * invSquareSize) * gs->mapx;

		if (square >= 0 && square < gs->mapSquares) {
			const BlockingMapCell& cell = groundBlockingObjectMap->GetCell(square);
			return cell.find(o->GetBlockingMapID()) != cell.end();
		}
	}
	// If the object isn't marked on blocking map, or it is flying,
	// effecively only the sphere check (in Collision(CUnit*) or
	// Collision(CFeature*)) is performed.
	return true;
}


// test if point <p> (in world-coors) lies inside the
// volume whose transformation matrix is given by <m>
bool CCollisionHandler::Collision(const CollisionVolume* v, const CMatrix44f& m, const float3& p)
{
	// get the inverse volume transformation matrix and
	// apply it to the projectile's position, then test
	// if the transformed position lies within the axis-
	// aligned collision volume
	CMatrix44f mInv = m.Invert();
	float3 pi = mInv.Mul(p);
	bool hit = false;

	switch (v->GetVolumeType()) {
		case COLVOL_TYPE_SPHERE: {
			// normally, this code is never executed, because the higher level
			// Collision(CFeature*) and Collision(CUnit*) already optimize
			// for volumeType == COLVOL_TYPE_SPHERE.
			hit = (pi.dot(pi) <= v->GetHScalesSq().x);
		} break;
		case COLVOL_TYPE_ELLIPSOID: {
			const float f1 = (pi.x * pi.x) / v->GetHScalesSq().x;
			const float f2 = (pi.y * pi.y) / v->GetHScalesSq().y;
			const float f3 = (pi.z * pi.z) / v->GetHScalesSq().z;
			hit = ((f1 + f2 + f3) <= 1.0f);
		} break;
		case COLVOL_TYPE_CYLINDER: {
			switch (v->GetPrimaryAxis()) {
				case COLVOL_AXIS_X: {
					const bool xPass = (pi.x > -v->GetHScales().x  &&  pi.x < v->GetHScales().x);
					const float yRat = (pi.y * pi.y) / v->GetHScalesSq().y;
					const float zRat = (pi.z * pi.z) / v->GetHScalesSq().z;
					hit = (xPass && (yRat + zRat <= 1.0f));
				} break;
				case COLVOL_AXIS_Y: {
					const bool yPass = (pi.y > -v->GetHScales().y  &&  pi.y < v->GetHScales().y);
					const float xRat = (pi.x * pi.x) / v->GetHScalesSq().x;
					const float zRat = (pi.z * pi.z) / v->GetHScalesSq().z;
					hit = (yPass && (xRat + zRat <= 1.0f));
				} break;
				case COLVOL_AXIS_Z: {
					const bool zPass = (pi.z > -v->GetHScales().z  &&  pi.z < v->GetHScales().z);
					const float xRat = (pi.x * pi.x) / v->GetHScalesSq().x;
					const float yRat = (pi.y * pi.y) / v->GetHScalesSq().y;
					hit = (zPass && (xRat + yRat <= 1.0f));
				} break;
			}
		} break;
		case COLVOL_TYPE_BOX: {
			const bool b1 = (pi.x > -v->GetHScales().x  &&  pi.x < v->GetHScales().x);
			const bool b2 = (pi.y > -v->GetHScales().y  &&  pi.y < v->GetHScales().y);
			const bool b3 = (pi.z > -v->GetHScales().z  &&  pi.z < v->GetHScales().z);
			hit = (b1 && b2 && b3);
		} break;
	}

	return hit;
}


bool CCollisionHandler::MouseHit(const CUnit* u, const float3& p0, const float3& p1, const CollisionVolume* v, CollisionQuery* q)
{
	// note: use the piece tree?
	CMatrix44f m = u->GetTransformMatrix(false, true);
	m.Translate(u->relMidPos + v->GetOffsets());

	return CCollisionHandler::Intersect(v, m, p0, p1, q);
}


void CCollisionHandler::IntersectPieceTreeHelper(
	LocalModelPiece* lmp,
	CMatrix44f mat,
	const float3& p0,
	const float3& p1,
	std::list<CollisionQuery>* hits)
{
	mat.Translate(lmp->pos);
	mat.RotateY(-lmp->rot[1]);
	mat.RotateX(-lmp->rot[0]);
	mat.RotateZ(-lmp->rot[2]);

	const CollisionVolume* vol = lmp->colvol;
	const float3& offset = vol->GetOffsets();

	mat.Translate(offset);

	if (lmp->visible && !vol->IsDisabled()) {
		CollisionQuery q;

		if (CCollisionHandler::Intersect(vol, mat, p0, p1, &q)) {
			q.lmp = lmp;
			hits->push_back(q);
		}
	}

	mat.Translate(-offset);

	for (unsigned int i = 0; i < lmp->childs.size(); i++) {
		IntersectPieceTreeHelper(lmp->childs[i], mat, p0, p1, hits);
	}
}

bool CCollisionHandler::IntersectPieceTree(const CUnit* u, const float3& p0, const float3& p1, CollisionQuery* q)
{
	std::list<CollisionQuery> hits;
	std::list<CollisionQuery>::const_iterator hitsIt;

	// this probably needs an early-out test
	CMatrix44f mat = u->GetTransformMatrix(true);
	IntersectPieceTreeHelper(u->localmodel->pieces[0], mat, p0, p1, &hits);

	float dstNearSq = 1e30f;

	// save the closest intersection
	for (hitsIt = hits.begin(); hitsIt != hits.end(); hitsIt++) {
		const CollisionQuery& qTmp = *hitsIt;
		const float dstSq = (qTmp.p0 - p0).SqLength();

		if (q != NULL && dstSq < dstNearSq) {
			dstNearSq = dstSq;

			q->b0 = qTmp.b0; q->t0 = qTmp.t0; q->p0 = qTmp.p0;
			q->b1 = qTmp.b1; q->t1 = qTmp.t1; q->p1 = qTmp.p1;

			q->lmp = qTmp.lmp;
		}
	}

	return (!hits.empty());
}


bool CCollisionHandler::Intersect(const CUnit* u, const float3& p0, const float3& p1, CollisionQuery* q)
{
	const CollisionVolume* v = u->collisionVolume;

	CMatrix44f m = u->GetTransformMatrix(true);
	m.Translate(u->relMidPos);
	m.Translate(v->GetOffsets());

	return CCollisionHandler::Intersect(v, m, p0, p1, q);
}

bool CCollisionHandler::Intersect(const CFeature* f, const float3& p0, const float3& p1, CollisionQuery* q)
{
	const CollisionVolume* v = f->collisionVolume;
	const float3 relMidPos(f->midPos - f->pos);

	CMatrix44f m(f->transMatrix);
	m.Translate(relMidPos);
	m.Translate(v->GetOffsets());

	return CCollisionHandler::Intersect(v, m, p0, p1, q);
}

/*
bool CCollisionHandler::IntersectAlt(const collisionVolume* d, const CMatrix44f& m, const float3& p0, const float3& p1, CollisionQuery*)
{
	// alternative numerical integration method (unused)
	const float delta = 1.0f;
	const float length = (p1 - p0).Length();
	const float3 dir = (p1 - p0).Normalize();

	for (float t = 0.0f; t <= length; t += delta) {
		if (::Collision(d, m, p0 + dir * t)) return true;
	}

	return false;
}
*/



// test if ray from <p0> to <p1> (in world-coors) intersects
// the volume whose transformation matrix is given by <m>
bool CCollisionHandler::Intersect(const CollisionVolume* v, const CMatrix44f& m, const float3& p0, const float3& p1, CollisionQuery* q)
{
	if (q) {
		// reset the query
		q->b0 = false; q->t0 = 0.0f; q->p0 = ZVEC;
		q->b1 = false; q->t1 = 0.0f; q->p1 = ZVEC;
	}

	CMatrix44f mInv = m.Invert();
	const float3 pi0 = mInv.Mul(p0);
	const float3 pi1 = mInv.Mul(p1);
	bool intersect = false;

	// minimum and maximum (x, y, z) coordinates of transformed ray
	const float rminx = std::min(pi0.x, pi1.x), rminy = std::min(pi0.y, pi1.y), rminz = std::min(pi0.z, pi1.z);
	const float rmaxx = std::max(pi0.x, pi1.x), rmaxy = std::max(pi0.y, pi1.y), rmaxz = std::max(pi0.z, pi1.z);

	// minimum and maximum (x, y, z) coordinates of (bounding box around) volume
	const float vminx = -v->GetHScales().x, vminy = -v->GetHScales().y, vminz = -v->GetHScales().z;
	const float vmaxx =  v->GetHScales().x, vmaxy =  v->GetHScales().y, vmaxz =  v->GetHScales().z;

	// check if ray segment misses (bounding box around) volume
	// (if so, then no further intersection tests are necessary)
	if (rmaxx < vminx || rminx > vmaxx) { return false; }
	if (rmaxy < vminy || rminy > vmaxy) { return false; }
	if (rmaxz < vminz || rminz > vmaxz) { return false; }

	switch (v->GetVolumeType()) {
		case COLVOL_TYPE_FOOTPRINT:
			// fall through, intersection with footprint collision volume
			// is not supported yet, so only test against sphere/ellipsoid
		case COLVOL_TYPE_SPHERE:
			// fall through, sphere is special case of ellipsoid
		case COLVOL_TYPE_ELLIPSOID: {
			intersect = CCollisionHandler::IntersectEllipsoid(v, pi0, pi1, q);
		} break;
		case COLVOL_TYPE_CYLINDER: {
			intersect = CCollisionHandler::IntersectCylinder(v, pi0, pi1, q);
		} break;
		case COLVOL_TYPE_BOX: {
			intersect = CCollisionHandler::IntersectBox(v, pi0, pi1, q);
		} break;
	}

	if (q) {
		// transform the intersection points
		if (q->b0) { q->p0 = m.Mul(q->p0); }
		if (q->b1) { q->p1 = m.Mul(q->p1); }
	}

	return intersect;
}

bool CCollisionHandler::IntersectEllipsoid(const CollisionVolume* v, const float3& pi0, const float3& pi1, CollisionQuery* q)
{
	// transform the volume-space points into (unit) sphere-space (requires fewer
	// float-ops than solving the surface equation for arbitrary ellipsoid volumes)
	const float3 pii0 = float3(pi0.x * v->GetHIScales().x, pi0.y * v->GetHIScales().y, pi0.z * v->GetHIScales().z);
	const float3 pii1 = float3(pi1.x * v->GetHIScales().x, pi1.y * v->GetHIScales().y, pi1.z * v->GetHIScales().z);
	const float rSq = 1.0f;

	if (pii0.dot(pii0) <= rSq /* && pii1.dot(pii1) <= rSq */) {
		// terminate early in the special case
		// that shot originated within volume
		q->b0 = true; q->p0 = ZVEC;
		q->b1 = true; q->p1 = ZVEC;
		return true;
	}

	// get the ray direction in unit-sphere space
	const float3 dir = (pii1 - pii0).SafeNormalize();

	// solves [ x^2 + y^2 + z^2 == r^2 ] for t
	// (<A> represents dir.dot(dir), equal to 1
	// since ray direction already normalized)
	const float A = 1.0f;
	const float B = (pii0 * 2.0f).dot(dir);
	const float C = pii0.dot(pii0) - rSq;
	const float D = (B * B) - (4.0f * A * C);

	if (D < -EPS) {
		return false;
	} else {
		// get the length of the ray segment in volume-space
		const float segLenSq = (pi1 - pi0).SqLength();

		if (D < EPS) {
			// one solution for t
			const float t0 = -B * 0.5f;
			// const float t0 = -B / (2.0f * A);
			// get the intersection point in sphere-space
			const float3 pTmp = pii0 + (dir * t0);
			// get the intersection point in volume-space
			const float3 p0(pTmp.x * v->GetHScales().x, pTmp.y * v->GetHScales().y, pTmp.z * v->GetHScales().z);
			// get the distance from the start of the segment
			// to the intersection point in volume-space
			const float dSq0 = (p0 - pi0).SqLength();
			// if the intersection point is closer to p0 than
			// the end of the ray segment, the hit is valid
			const bool b0 = (t0 > 0.0f && dSq0 <= segLenSq);

			if (q) {
				q->b0 = b0; q->b1 = false;
				q->t0 = t0; q->t1 = 0.0f;
				q->p0 = p0; q->p1 = ZVEC;
			}

			return b0;
		} else {
			// two solutions for t
			const float rD = fastmath::apxsqrt(D);
			const float t0 = (-B - rD) * 0.5f;
			const float t1 = (-B + rD) * 0.5f;
			// const float t0 = (-B + rD) / (2.0f * A);
			// const float t1 = (-B - rD) / (2.0f * A);
			// get the intersection points in sphere-space
			const float3 pTmp0 = pii0 + (dir * t0);
			const float3 pTmp1 = pii0 + (dir * t1);
			// get the intersection points in volume-space
			const float3 p0(pTmp0.x * v->GetHScales().x, pTmp0.y * v->GetHScales().y, pTmp0.z * v->GetHScales().z);
			const float3 p1(pTmp1.x * v->GetHScales().x, pTmp1.y * v->GetHScales().y, pTmp1.z * v->GetHScales().z);
			// get the distances from the start of the ray
			// to the intersection points in volume-space
			const float dSq0 = (p0 - pi0).SqLength();
			const float dSq1 = (p1 - pi0).SqLength();
			// if one of the intersection points is closer to p0
			// than the end of the ray segment, the hit is valid
			const bool b0 = (t0 > 0.0f && dSq0 <= segLenSq);
			const bool b1 = (t1 > 0.0f && dSq1 <= segLenSq);

			if (q) {
				q->b0 = b0; q->b1 = b1;
				q->t0 = t0; q->t1 = t1;
				q->p0 = p0; q->p1 = p1;
			}

			return (b0 || b1);
		}
	}
}

bool CCollisionHandler::IntersectCylinder(const CollisionVolume* v, const float3& pi0, const float3& pi1, CollisionQuery* q)
{
	const int pAx = v->GetPrimaryAxis();
	const int sAx0 = v->GetSecondaryAxis(0);
	const int sAx1 = v->GetSecondaryAxis(1);
	const float3& ahs = v->GetHScales();
	const float3& ahsq = v->GetHScalesSq();
	const float ratio =
		((pi0[sAx0] * pi0[sAx0]) / ahsq[sAx0]) +
		((pi0[sAx1] * pi0[sAx1]) / ahsq[sAx1]);

	if ((pi0[pAx] > -ahs[pAx] && pi0[pAx] < ahs[pAx]) && ratio <= 1.0f) {
		// terminate early in the special case
		// that shot originated within volume
		q->b0 = true; q->p0 = ZVEC;
		q->b1 = true; q->p1 = ZVEC;
		return true;
	}

	// ray direction in volume-space
	const float3 dir = (pi1 - pi0).SafeNormalize();

	// ray direction in (unit) cylinder-space
	float3 diir = ZVEC;

	// ray terminals in (unit) cylinder-space
	float3 pii0 = pi0;
	float3 pii1 = pi1;

	// end-cap plane normals in volume-space
	float3 n0 = ZVEC;
	float3 n1 = ZVEC;

	// (unit) cylinder-space to volume-space transformation
	float3 inv(1.0f, 1.0f, 1.0f);

	// unit-cylinder surface equation params
	float a = 0.0f;
	float b = 0.0f;
	float c = 0.0f;

	switch (pAx) {
		case COLVOL_AXIS_X: {
			pii0.y = pi0.y * v->GetHIScales().y;
			pii0.z = pi0.z * v->GetHIScales().z;
			pii1.y = pi1.y * v->GetHIScales().y;
			pii1.z = pi1.z * v->GetHIScales().z;

			inv.y = v->GetHScales().y;
			inv.z = v->GetHScales().z;
			diir = (pii1 - pii0).SafeNormalize();

			n0.x = -1.0f; // left
			n1.x =  1.0f; // right

			// yz-surface equation params
			a =  (diir.y * diir.y) + (diir.z * diir.z);
			b = ((pii0.y * diir.y) + (pii0.z * diir.z)) * 2.0f;
			c =  (pii0.y * pii0.y) + (pii0.z * pii0.z)  - 1.0f;
		} break;
		case COLVOL_AXIS_Y: {
			pii0.x = pi0.x * v->GetHIScales().x;
			pii0.z = pi0.z * v->GetHIScales().z;
			pii1.x = pi1.x * v->GetHIScales().x;
			pii1.z = pi1.z * v->GetHIScales().z;

			inv.x = v->GetHScales().x;
			inv.z = v->GetHScales().z;
			diir = (pii1 - pii0).SafeNormalize();

			n0.y =  1.0f; // top
			n1.y = -1.0f; // bottom

			// xz-surface equation params
			a =  (diir.x * diir.x) + (diir.z * diir.z);
			b = ((pii0.x * diir.x) + (pii0.z * diir.z)) * 2.0f;
			c =  (pii0.x * pii0.x) + (pii0.z * pii0.z)  - 1.0f;
		} break;
		case COLVOL_AXIS_Z: {
			pii0.x = pi0.x * v->GetHIScales().x;
			pii0.y = pi0.y * v->GetHIScales().y;
			pii1.x = pi1.x * v->GetHIScales().x;
			pii1.y = pi1.y * v->GetHIScales().y;

			inv.x = v->GetHScales().x;
			inv.y = v->GetHScales().y;
			diir = (pii1 - pii0).SafeNormalize();

			n0.z =  1.0f; // front
			n1.z = -1.0f; // back

			// xy-surface equation params
			a =  (diir.x * diir.x) + (diir.y * diir.y);
			b = ((pii0.x * diir.x) + (pii0.y * diir.y)) * 2.0f;
			c =  (pii0.x * pii0.x) + (pii0.y * pii0.y)  - 1.0f;
		} break;
	}

	float d = (b * b) - (4.0f * a * c);
	float rd = 0.0f;
	float dp = 0.0f, rdp = 0.0f;

	// volume-space intersection points
	float3 p0 = ZVEC;
	float3 p1 = ZVEC;

	bool b0 = false;
	bool b1 = false;
	float r0 = 0.0f, s0 = 0.0f, t0 = 0.0f;
	float r1 = 0.0f, s1 = 0.0f, t1 = 0.0f;

	// get the length of the ray segment in volume-space
	const float segLenSq = (pi1 - pi0).SqLength();

	if (d >= -EPS) {
		// one or two surface intersections
		if (d < EPS) {
			t0 = -b / (2.0f * a);
			p0 = (pii0 + (diir * t0)) * inv;
			s0 = (p0 - pi0).SqLength();
			b0 = (s0 < segLenSq && (p0[pAx] > -ahs[pAx] && p0[pAx] < ahs[pAx]));
		} else {
			rd = fastmath::apxsqrt(d);
			t0 = (-b - rd) / (2.0f * a);
			t1 = (-b + rd) / (2.0f * a);
			p0 = (pii0 + (diir * t0)) * inv;
			p1 = (pii0 + (diir * t1)) * inv;
			s0 = (p0 - pi0).SqLength();
			s1 = (p1 - pi0).SqLength();
			b0 = (s0 < segLenSq && (p0[pAx] > -ahs[pAx] && p0[pAx] < ahs[pAx]));
			b1 = (s1 < segLenSq && (p1[pAx] > -ahs[pAx] && p1[pAx] < ahs[pAx]));
		}
	}

	if (!b0) {
		// p0 does not lie on ray segment, or does not fall
		// between cylinder end-caps: check if segment goes
		// through front cap (plane)
		// NOTE: normal n0 and dir should not be orthogonal
		dp = n0.dot(dir);
		rdp = (dp != 0.0f)? 1.0f / dp: 0.01f;

		t0 = -(n0.dot(pi0) - ahs[pAx]) * rdp;
		p0 = pi0 + (dir * t0);
		s0 = (p0 - pi0).SqLength();
		r0 =
			(((p0[sAx0] * p0[sAx0]) / ahsq[sAx0]) +
			 ((p0[sAx1] * p0[sAx1]) / ahsq[sAx1]));
		b0 = (t0 >= 0.0f && r0 <= 1.0f && s0 <= segLenSq);
	}
	if (!b1) {
		// p1 does not lie on ray segment, or does not fall
		// between cylinder end-caps: check if segment goes
		// through rear cap (plane)
		// NOTE: normal n1 and dir should not be orthogonal
		dp = n1.dot(dir);
		rdp = (dp != 0.0f)? 1.0f / dp: 0.01f;

		t1 = -(n1.dot(pi0) - ahs[pAx]) * rdp;
		p1 = pi0 + (dir * t1);
		s1 = (p1 - pi0).SqLength();
		r1 =
			(((p1[sAx0] * p1[sAx0]) / ahsq[sAx0]) +
			 ((p1[sAx1] * p1[sAx1]) / ahsq[sAx1]));
		b1 = (t1 >= 0.0f && r1 <= 1.0f && s1 <= segLenSq);
	}

	if (q) {
		q->b0 = b0; q->b1 = b1;
		q->t0 = t0; q->t1 = t1;
		q->p0 = p0; q->p1 = p1;
	}

	return (b0 || b1);
}

bool CCollisionHandler::IntersectBox(const CollisionVolume* v, const float3& pi0, const float3& pi1, CollisionQuery* q)
{
	const bool ba = (pi0.x > -v->GetHScales().x  &&  pi0.x < v->GetHScales().x);
	const bool bb = (pi0.y > -v->GetHScales().y  &&  pi0.y < v->GetHScales().y);
	const bool bc = (pi0.z > -v->GetHScales().z  &&  pi0.z < v->GetHScales().z);

	if ((ba && bb && bc) /* && (bd && be && bf) */) {
		// terminate early in the special case
		// that shot originated within volume
		q->b0 = true; q->p0 = ZVEC;
		q->b1 = true; q->p1 = ZVEC;
		return true;
	}

	float tn = -9999999.9f;
	float tf =  9999999.9f;
	float t0 =  0.0f;
	float t1 =  0.0f;
	float t2 =  0.0f;

	const float3 dir = (pi1 - pi0).SafeNormalize();

	if (dir.x > -EPS && dir.x < EPS) {
		if (pi0.x < -v->GetHScales().x  ||  pi0.x > v->GetHScales().x) {
			return false;
		}
	} else {
		if (dir.x > 0.0f) {
			t0 = (-v->GetHScales().x - pi0.x) / dir.x;
			t1 = ( v->GetHScales().x - pi0.x) / dir.x;
		} else {
			t1 = (-v->GetHScales().x - pi0.x) / dir.x;
			t0 = ( v->GetHScales().x - pi0.x) / dir.x;
		}

		if (t0 > t1) { t2 = t1; t1 = t0; t0 = t2; }
		if (t0 > tn) { tn = t0; }
		if (t1 < tf) { tf = t1; }
		if (tn > tf) { return false; }
		if (tf < 0.0f) { return false; }
	}

	if (dir.y > -EPS && dir.y < EPS) {
		if (pi0.y < -v->GetHScales().y  ||  pi0.y > v->GetHScales().y) {
			return false;
		}
	} else {
		if (dir.y > 0.0f) {
			t0 = (-v->GetHScales().y - pi0.y) / dir.y;
			t1 = ( v->GetHScales().y - pi0.y) / dir.y;
		} else {
			t1 = (-v->GetHScales().y - pi0.y) / dir.y;
			t0 = ( v->GetHScales().y - pi0.y) / dir.y;
		}

		if (t0 > t1) { t2 = t1; t1 = t0; t0 = t2; }
		if (t0 > tn) { tn = t0; }
		if (t1 < tf) { tf = t1; }
		if (tn > tf) { return false; }
		if (tf < 0.0f) { return false; }
	}

	if (dir.z > -EPS && dir.z < EPS) {
		if (pi0.z < -v->GetHScales().z  ||  pi0.z > v->GetHScales().z) {
			return false;
		}
	} else {
		if (dir.z > 0.0f) {
			t0 = (-v->GetHScales().z - pi0.z) / dir.z;
			t1 = ( v->GetHScales().z - pi0.z) / dir.z;
		} else {
			t1 = (-v->GetHScales().z - pi0.z) / dir.z;
			t0 = ( v->GetHScales().z - pi0.z) / dir.z;
		}

		if (t0 > t1) { t2 = t1; t1 = t0; t0 = t2; }
		if (t0 > tn) { tn = t0; }
		if (t1 < tf) { tf = t1; }
		if (tn > tf) { return false; }
		if (tf < 0.0f) { return false; }
	}

	// get the intersection points in volume-space
	const float3 p0 = pi0 + (dir * tn);
	const float3 p1 = pi0 + (dir * tf);
	// get the length of the ray segment in volume-space
	const float segLenSq = (pi1 - pi0).SqLength();
	// get the distances from the start of the ray
	// to the intersection points in volume-space
	const float dSq0 = (p0 - pi0).SqLength();
	const float dSq1 = (p1 - pi0).SqLength();
	// if one of the intersection points is closer to p0
	// than the end of the ray segment, the hit is valid
	const bool b0 = (dSq0 <= segLenSq);
	const bool b1 = (dSq1 <= segLenSq);

	if (q) {
		q->b0 = b0; q->b1 = b1;
		q->t0 = tn; q->t1 = tf;
		q->p0 = p0; q->p1 = p1;
	}

	return (b0 || b1);
}