1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#include "StdAfx.h"
#include "MoveMath.h"
#include "Map/ReadMap.h"
#include "Map/MapInfo.h"
#include "Sim/Features/Feature.h"
#include "Sim/Misc/GroundBlockingObjectMap.h"
#include "Sim/Units/Unit.h"
#include "Sim/Units/CommandAI/CommandAI.h"
#include "LogOutput.h"
#include "mmgr.h"
CR_BIND_INTERFACE(CMoveMath);
CMoveMath::~CMoveMath() {
}
/* Converts a point-request into a square-positional request. */
float CMoveMath::SpeedMod(const MoveData& moveData, float3 pos) {
int x = int(pos.x / SQUARE_SIZE);
int z = int(pos.z / SQUARE_SIZE);
return SpeedMod(moveData, x, z);
}
/* calculate the local speed-modifier for this movedata */
float CMoveMath::SpeedMod(const MoveData& moveData, int xSquare, int zSquare) {
// Error-check
if (xSquare < 0 || zSquare < 0 || xSquare >= gs->mapx || zSquare >= gs->mapy) {
return 0.0f;
}
// Extract data.
const int square = xSquare / 2 + zSquare / 2 * gs->hmapx;
const int squareTerrType = readmap->typemap[square];
const float height = readmap->mipHeightmap[1][square];
const float slope = readmap->slopemap[square];
const CMapInfo::TerrainType& tt = mapInfo->terrainTypes[squareTerrType];
switch (moveData.moveFamily) {
case MoveData::Tank: { return (SpeedMod(moveData, height, slope) * tt.tankSpeed ); } break;
case MoveData::KBot: { return (SpeedMod(moveData, height, slope) * tt.kbotSpeed ); } break;
case MoveData::Hover: { return (SpeedMod(moveData, height, slope) * tt.hoverSpeed); } break;
case MoveData::Ship: { return (SpeedMod(moveData, height, slope) * tt.shipSpeed ); } break;
default: {} break;
}
return 0.0f;
}
float CMoveMath::SpeedMod(const MoveData& moveData, float3 pos, const float3& moveDir) {
int x = int(pos.x / SQUARE_SIZE);
int z = int(pos.z / SQUARE_SIZE);
return SpeedMod(moveData, x, z,moveDir);
}
float CMoveMath::SpeedMod(const MoveData& moveData, int xSquare, int zSquare, const float3& moveDir) {
// Error-check
if (xSquare < 0 || zSquare < 0 || xSquare >= gs->mapx || zSquare >= gs->mapy) {
return 0.0f;
}
// Extract data.
const int square = xSquare / 2 + zSquare / 2 * gs->hmapx;
const int squareTerrType = readmap->typemap[square];
const float height = readmap->mipHeightmap[1][square];
const float slope = readmap->slopemap[square];
const CMapInfo::TerrainType& tt = mapInfo->terrainTypes[squareTerrType];
float3 flatNorm = readmap->centernormals[xSquare + zSquare * gs->mapx];
flatNorm.y = 0;
flatNorm.SafeNormalize();
const float moveSlope = -moveDir.dot(flatNorm);
switch (moveData.moveFamily) {
case MoveData::Tank: { return (SpeedMod(moveData, height, slope, moveSlope) * tt.tankSpeed ); } break;
case MoveData::KBot: { return (SpeedMod(moveData, height, slope, moveSlope) * tt.kbotSpeed ); } break;
case MoveData::Hover: { return (SpeedMod(moveData, height, slope, moveSlope) * tt.hoverSpeed); } break;
case MoveData::Ship: { return (SpeedMod(moveData, height, slope, moveSlope) * tt.shipSpeed ); } break;
default: {} break;
}
return 0.0f;
}
/* Converts a point-request into a square-positional request. */
int CMoveMath::IsBlocked(const MoveData& moveData, float3 pos, bool fromEst) {
int x = int(pos.x / SQUARE_SIZE);
int z = int(pos.z / SQUARE_SIZE);
return IsBlocked(moveData, x, z, fromEst);
}
/* Check if a given square-position is accessable by the movedata footprint. */
int CMoveMath::IsBlocked(const MoveData& moveData, int xSquare, int zSquare, bool fromEst) {
if (CMoveMath::SpeedMod(moveData, xSquare, zSquare) == 0.0f) {
return 1;
}
int ret = 0;
ret |= SquareIsBlocked(moveData, xSquare , zSquare , fromEst);
ret |= SquareIsBlocked(moveData, xSquare - moveData.size / 2 , zSquare - moveData.size / 2 , fromEst);
ret |= SquareIsBlocked(moveData, xSquare + moveData.size / 2 - 1, zSquare - moveData.size / 2 , fromEst);
ret |= SquareIsBlocked(moveData, xSquare - moveData.size / 2 , zSquare + moveData.size / 2 - 1, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + moveData.size / 2 - 1, zSquare + moveData.size / 2 - 1, fromEst);
return ret;
}
/*
* Check if a given square-position is accessable given the movedata footprint.
* Doesn't check terrain, but takes size into account so it does not run over
* something small if footprint is big.
*/
int CMoveMath::IsBlocked2(const MoveData& moveData, int xSquare, int zSquare, bool fromEst) {
int ret = 0;
switch (moveData.size) {
case 12:
case 11:
ret |= SquareIsBlocked(moveData, xSquare + 4, zSquare + 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 6, zSquare + 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 6, zSquare - 6, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + 4, zSquare - 6, fromEst);
case 8:
case 7:
ret |= SquareIsBlocked(moveData, xSquare + 2, zSquare + 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 4, zSquare + 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 4, zSquare - 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + 2, zSquare - 4, fromEst);
case 4:
case 3:
ret |= SquareIsBlocked(moveData, xSquare , zSquare , fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 2, zSquare , fromEst);
ret |= SquareIsBlocked(moveData, xSquare , zSquare - 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 2, zSquare - 2, fromEst);
break;
case 14:
case 13:
ret |= SquareIsBlocked(moveData, xSquare + 6, zSquare + 6, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 6, zSquare + 6, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 6, zSquare - 6, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + 6, zSquare - 6, fromEst);
case 10:
case 9:
ret |= SquareIsBlocked(moveData, xSquare + 4, zSquare + 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 4, zSquare + 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 4, zSquare - 4, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + 4, zSquare - 4, fromEst);
case 6:
case 5:
ret |= SquareIsBlocked(moveData, xSquare + 2, zSquare + 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 2, zSquare + 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare - 2, zSquare - 2, fromEst);
ret |= SquareIsBlocked(moveData, xSquare + 2, zSquare - 2, fromEst);
case 2:
case 1:
ret |= SquareIsBlocked(moveData, xSquare, zSquare, fromEst);
break;
default:
logOutput.Print("Unknown footprint size in IsBlocked2() (%i)", moveData.size);
break;
};
return ret;
}
/*
* check if an object is blocking or not for a given MoveData (feature
* objects block iif their mass exceeds the movedata's crush-strength).
* NOTE: modify for selective blocking
*/
bool CMoveMath::CrushResistant(const MoveData& moveData, const CSolidObject* object) {
return
(object->blocking && (!dynamic_cast<const CFeature*>(object) ||
object->mass > moveData.crushStrength));
}
/*
* check if an object is NON-blocking for a given MoveData
* (ex. a submarine's moveDef vs. a surface ship object)
*/
bool CMoveMath::IsNonBlocking(const MoveData& moveData, const CSolidObject* obstacle) {
const CSolidObject* unit = moveData.tempOwner;
const int hx = int(obstacle->pos.x / SQUARE_SIZE);
const int hz = int(obstacle->pos.z / SQUARE_SIZE);
const int hi = (hx >> 1) + (hz >> 1) * gs->hmapx;
const int hj = (gs->mapx >> 1) * (gs->mapy >> 1); // sizeof(mipHeightmap[1])
if (hi < 0 || hi >= hj) {
// unit is out of map bounds, so cannot be blocked
return true;
}
if (unit != NULL) {
// simple case: if unit and obstacle have non-zero
// vertical separation as measured by their (model)
// heights, unit can always pass
// note: in many cases separation is not sufficient
// even when it logically should be (submarines vs.
// floating DT in shallow water)
const float elevDif = streflop::fabs(unit->pos.y - obstacle->pos.y);
const float hghtSum = streflop::fabs(unit->height) + streflop::fabs(obstacle->height);
if ((elevDif - hghtSum) >= 1.0f) { return true; }
if ( elevDif <= 1.0f) { return false; }
}
if (moveData.terrainClass == MoveData::Land) {
// if unit is restricted to land with > 0 height,
// it can not be blocked by underwater obstacles
return (obstacle->isUnderWater);
}
const bool unitSub = moveData.subMarine;
const bool obstSub = (obstacle->mobility && obstacle->mobility->subMarine);
// some objects appear to have negative model heights
// (the S3DO parsers allow it for some reason), take
// the absolute value to prevent them being regarded
// as non-blocking
const float oy = obstacle->pos.y;
const float oh = std::max(obstacle->height, -obstacle->height);
const float gy = readmap->mipHeightmap[1][hi];
// remaining conditions under which obstacle does NOT block unit
// 1.
// (unit is ground-following or not currently in water) and
// obstacle's altitude minus its model height leaves a gap
// between it and the ground
// 2.
// unit is a submarine, obstacle sticks out above-water
// (and not itself flagged as a submarine) *OR* unit is
// not a submarine and obstacle is (fully under-water or
// flagged as a submarine)
// NOTE: causes stacking for submarines that are *not*
// explicitly flagged as such
//
// note that these conditions can lead to a certain degree of
// clipping, for full 3D accuracy the height of the movedata
// owner would need to be accessible (but the path-estimator
// defs aren't tied to any)
if (moveData.followGround || (gy > 0.0f)) {
return ((oy - oh) > gy);
} else {
if (unitSub) {
return (((oy + oh) > 0.0f) && !obstSub);
} else {
return (((oy + oh) <= 0.0f) || obstSub);
}
}
return false;
}
/* Converts a point-request into a square-positional request. */
float CMoveMath::yLevel(const float3& pos) {
int x = int(pos.x / SQUARE_SIZE);
int z = int(pos.z / SQUARE_SIZE);
return yLevel(x, z);
}
/* Check if a single square is accessable (for any object which uses the given movedata). */
int CMoveMath::SquareIsBlocked(const MoveData& moveData, int xSquare, int zSquare, bool fromEst) {
// bounds-check
if (xSquare < 0 || zSquare < 0 || xSquare >= gs->mapx || zSquare >= gs->mapy) {
return 1;
}
int r = 0;
const BlockingMapCell& c = groundBlockingObjectMap->GetCell(xSquare + zSquare * gs->mapx);
BlockingMapCellIt it;
for (it = c.begin(); it != c.end(); it++) {
CSolidObject* obstacle = it->second;
if (IsNonBlocking(moveData, obstacle)) {
continue;
}
// mobility implies canmove, but not (speed > 0.0f)
if (obstacle->mobility && !obstacle->immobile) {
// mobile obstacle
if (obstacle->isMoving) {
r |= BLOCK_MOVING;
} else {
if (!((CUnit*) obstacle)->beingBuilt && ((CUnit*) obstacle)->commandAI->commandQue.empty()) {
// idling mobile unit
r |= BLOCK_MOBILE;
} else {
// busy mobile unit (but not following path)
r |= BLOCK_MOBILE_BUSY;
}
}
} else {
if (CrushResistant(moveData, obstacle)) {
r |= BLOCK_STRUCTURE;
}
}
}
return r;
}
|