1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <string.h>
#include "Camera.h"
#include "UI/MouseHandler.h"
#include "Map/ReadMap.h"
#include "System/myMath.h"
#include "System/float3.h"
#include "System/Matrix44f.h"
#include "Rendering/GlobalRendering.h"
#include "System/Config/ConfigHandler.h"
CONFIG(float, EdgeMoveWidth)
.defaultValue(0.02f)
.minimumValue(0.0f)
.description("The width (in percent of screen size) of the EdgeMove scrolling area.");
CONFIG(bool, EdgeMoveDynamic)
.defaultValue(true)
.description("If EdgeMove scrolling speed should fade with edge distance.");
CCamera* CCamera::camTypes[CCamera::CAMTYPE_COUNT] = {nullptr};
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CCamera::CCamera(unsigned int cameraType)
: pos(ZeroVector)
, rot(ZeroVector)
, forward(RgtVector)
, up(UpVector)
, fov(0.0f)
, halfFov(0.0f)
, tanHalfFov(0.0f)
, lppScale(0.0f)
, frustumScales(0.0f, 0.0f, CGlobalRendering::NEAR_PLANE, CGlobalRendering::MAX_VIEW_RANGE)
, posOffset(ZeroVector)
, tiltOffset(ZeroVector)
, camType(cameraType)
, projType((cameraType == CAMTYPE_SHADOW)? PROJTYPE_ORTHO: PROJTYPE_PERSP)
{
assert(cameraType < CAMTYPE_ACTIVE);
memset(viewport, 0, 4 * sizeof(int));
memset(movState, 0, sizeof(movState));
memset(rotState, 0, sizeof(rotState));
SetVFOV(45.0f);
}
void CCamera::CopyState(const CCamera* cam)
{
for (unsigned int i = 0; i < FRUSTUM_PLANE_CNT; i++) {
frustumPlanes[i] = cam->frustumPlanes[i];
}
// note: xy-scales are only relevant for CAMTYPE_SHADOW
frustumScales = cam->frustumScales;
forward = cam->GetForward();
right = cam->GetRight();
up = cam->GetUp();
pos = cam->GetPos();
rot = cam->GetRot();
fov = cam->GetVFOV();
halfFov = cam->GetHalfFov();
tanHalfFov = cam->GetTanHalfFov();
lppScale = cam->GetLPPScale();
// do not copy this, each camera knows its own type
// camType = cam->GetCamType();
}
void CCamera::CopyStateReflect(const CCamera* cam)
{
assert(cam->GetCamType() != CAMTYPE_UWREFL);
assert( GetCamType() == CAMTYPE_UWREFL);
SetDir(cam->GetDir() * float3(1.0f, -1.0f, 1.0f));
SetPos(cam->GetPos() * float3(1.0f, -1.0f, 1.0f));
SetRotZ(-cam->GetRot().z);
Update(false, true, false);
}
void CCamera::Update(bool updateDirs, bool updateMats, bool updatePort)
{
if (globalRendering->viewSizeY <= 0) {
lppScale = 0.0f;
} else {
lppScale = (2.0f * tanHalfFov) / globalRendering->viewSizeY;
}
// should be set before UpdateMatrices
UpdateViewRange();
if (updateDirs)
UpdateDirsFromRot(rot);
if (updateMats)
UpdateMatrices(globalRendering->viewSizeX, globalRendering->viewSizeY, globalRendering->aspectRatio);
if (updatePort)
UpdateViewPort(globalRendering->viewPosX, 0, globalRendering->viewSizeX, globalRendering->viewSizeY);
UpdateFrustum();
LoadMatrices();
// not done here
// LoadViewPort();
}
void CCamera::UpdateFrustum()
{
switch (projType) {
case PROJTYPE_PERSP: {
// NOTE: "-" because we want normals
const float3 forwardy = (-forward * tanHalfFov );
const float3 forwardx = (-forward * math::tan(globalRendering->aspectRatio * halfFov));
frustumPlanes[FRUSTUM_PLANE_TOP] = (forwardy + up).UnsafeANormalize();
frustumPlanes[FRUSTUM_PLANE_BOT] = (forwardy - up).UnsafeANormalize();
frustumPlanes[FRUSTUM_PLANE_RGT] = (forwardx + right).UnsafeANormalize();
frustumPlanes[FRUSTUM_PLANE_LFT] = (forwardx - right).UnsafeANormalize();
} break;
case PROJTYPE_ORTHO: {
frustumPlanes[FRUSTUM_PLANE_TOP] = up;
frustumPlanes[FRUSTUM_PLANE_BOT] = -up;
frustumPlanes[FRUSTUM_PLANE_RGT] = right;
frustumPlanes[FRUSTUM_PLANE_LFT] = -right;
} break;
default: {
assert(false);
} break;
}
frustumPlanes[FRUSTUM_PLANE_FRN] = -forward;
frustumPlanes[FRUSTUM_PLANE_BCK] = forward;
if (camType != CAMTYPE_VISCUL) {
// vis-culling is always performed from player's (or light's)
// POV but also happens during e.g. cubemap generation; copy
// over the frustum planes we just calculated above such that
// GetFrustumSides can be called by all parties interested in
// VC
//
// note that this is the only place where VISCUL is updated!
camTypes[CAMTYPE_VISCUL]->CopyState(camTypes[camType]);
}
}
void CCamera::UpdateMatrices(unsigned int vsx, unsigned int vsy, float var)
{
// recalculate the projection transform
switch (projType) {
case PROJTYPE_PERSP: {
gluPerspectiveSpring(var, frustumScales.z, frustumScales.w);
} break;
case PROJTYPE_ORTHO: {
glOrthoScaledSpring(vsx, vsy, frustumScales.z, frustumScales.w);
} break;
default: {
assert(false);
} break;
}
// FIXME:
// should be applying the offsets to pos/up/right/forward/etc,
// but without affecting the real positions (need an intermediary)
const float3 fShake = ((forward * (1.0f + tiltOffset.z)) + (right * tiltOffset.x) + (up * tiltOffset.y)).ANormalize();
const float3 camPos = pos + posOffset;
const float3 center = camPos + fShake;
// recalculate the view transform
gluLookAtSpring(camPos, center, up);
// create extra matrices (useful for shaders)
viewProjectionMatrix = projectionMatrix * viewMatrix;
viewMatrixInverse = viewMatrix.InvertAffine();
projectionMatrixInverse = projectionMatrix.Invert();
viewProjectionMatrixInverse = viewProjectionMatrix.Invert();
billboardMatrix = viewMatrix;
billboardMatrix.SetPos(ZeroVector);
billboardMatrix.Transpose(); // viewMatrix is affine, equals inverse
}
void CCamera::UpdateViewPort(int px, int py, int sx, int sy)
{
viewport[0] = px;
viewport[1] = py;
viewport[2] = sx;
viewport[3] = sy;
}
void CCamera::UpdateLoadViewPort(int px, int py, int sx, int sy)
{
UpdateViewPort(px, py, sx, sy);
LoadViewPort();
}
void CCamera::LoadMatrices() const
{
glMatrixMode(GL_PROJECTION);
glLoadMatrixf(&projectionMatrix.m[0]);
glMatrixMode(GL_MODELVIEW);
glLoadMatrixf(&viewMatrix.m[0]);
}
void CCamera::LoadViewPort() const
{
glViewport(viewport[0], viewport[1], viewport[2], viewport[3]);
}
void CCamera::UpdateViewRange()
{
const float maxDistToBorderX = std::max(pos.x, float3::maxxpos - pos.x);
const float maxDistToBorderZ = std::max(pos.z, float3::maxzpos - pos.z);
const float maxDistToBorder = math::sqrt(Square(maxDistToBorderX) + Square(maxDistToBorderZ));
const float angleViewRange = (1.0f - forward.dot(UpVector)) * maxDistToBorder;
const float heightViewRange = (pos.y - std::max(0.0f, readMap->GetCurrMinHeight())) * 2.4f;
float wantedViewRange = CGlobalRendering::MAX_VIEW_RANGE;
// camera-height dependent (i.e. TAB-view)
wantedViewRange = std::max(wantedViewRange, heightViewRange);
// view-angle dependent (i.e. FPS-view)
wantedViewRange = std::max(wantedViewRange, angleViewRange);
const float factor = wantedViewRange / CGlobalRendering::MAX_VIEW_RANGE;
frustumScales.z = CGlobalRendering::NEAR_PLANE * factor;
frustumScales.w = CGlobalRendering::MAX_VIEW_RANGE * factor;
globalRendering->zNear = frustumScales.z;
globalRendering->viewRange = frustumScales.w;
}
static inline bool AABBInOriginPlane(
const float3& camPos,
const float3& mins,
const float3& maxs,
const float3& normal,
const float offset
) {
float3 fp; // far point
fp.x = (normal.x > 0.0f) ? mins.x : maxs.x;
fp.y = (normal.y > 0.0f) ? mins.y : maxs.y;
fp.z = (normal.z > 0.0f) ? mins.z : maxs.z;
return (normal.dot(fp - camPos) < offset);
}
bool CCamera::InView(const float3& mins, const float3& maxs) const
{
// orthographic plane offsets along each respective normal; [0] = LFT&RGT, [1] = TOP&BOT
const float planeOffsets[2] = {frustumScales.x, frustumScales.y};
// axis-aligned bounding box test (AABB)
for (unsigned int i = FRUSTUM_PLANE_LFT; i < FRUSTUM_PLANE_FRN; i++) {
if (!AABBInOriginPlane(pos, mins, maxs, frustumPlanes[i], planeOffsets[i >> 1])) {
return false;
}
}
return true;
}
bool CCamera::InView(const float3& p, float radius) const
{
// use arrays because neither float2 nor float4 have an operator[]
const float xyPlaneOffsets[2] = {frustumScales.x, frustumScales.y};
const float zPlaneOffsets[2] = {frustumScales.z, frustumScales.w};
const float3 objectVector = p - pos;
assert(FRUSTUM_PLANE_LFT == 0);
assert(FRUSTUM_PLANE_FRN == 4);
#if 0
// test if <p> is in front of the near-plane
if (objectVector.dot(frustumPlanes[FRUSTUM_PLANE_FRN]) > (zPlaneOffsets[0] + radius))
return false;
#endif
// test if <p> is in front of a side-plane (LRTB)
for (unsigned int i = FRUSTUM_PLANE_LFT; i < FRUSTUM_PLANE_FRN; i++) {
if (objectVector.dot(frustumPlanes[i]) > (xyPlaneOffsets[i >> 1] + radius)) {
return false;
}
}
// test if <p> is behind the far-plane
return (objectVector.dot(frustumPlanes[FRUSTUM_PLANE_BCK]) <= (zPlaneOffsets[1] + radius));
}
void CCamera::SetVFOV(const float angle)
{
fov = angle;
halfFov = (fov * 0.5f) * (PI / 180.f);
tanHalfFov = math::tan(halfFov);
}
float CCamera::GetHFOV() const {
const float hAspect = (viewport[2] * 1.0f) / viewport[3];
const float fovFact = math::tan(fov * 0.5f) * hAspect;
return (2.0f * math::atan(fovFact) * (180.0f / PI));
}
float3 CCamera::GetRotFromDir(float3 fwd)
{
fwd.Normalize();
// NOTE:
// atan2(0.0, 0.0) returns 0.0
// atan2(0.0, -0.0) returns PI
// azimuth (yaw) 0 is on negative z-axis
// roll-angle (rot.z) is always 0 by default
float3 r;
r.x = math::acos(fwd.y);
r.y = math::atan2(fwd.x, -fwd.z);
r.z = 0.0f;
return r;
}
float3 CCamera::GetFwdFromRot(const float3 r)
{
float3 fwd;
fwd.x = std::sin(r.x) * std::sin(r.y);
fwd.z = std::sin(r.x) * (-std::cos(r.y));
fwd.y = std::cos(r.x);
return fwd;
}
float3 CCamera::GetRgtFromRot(const float3 r)
{
// FIXME:
// right should always be "right" relative to forward
// (i.e. up should always point "up" in WS and camera
// can not flip upside down) but is not
//
// fwd=(0,+1,0) -> rot=GetRotFromDir(fwd)=(0.0, PI, 0.0) -> GetRgtFromRot(rot)=(-1.0, 0.0, 0.0)
// fwd=(0,-1,0) -> rot=GetRotFromDir(fwd)=( PI, PI, 0.0) -> GetRgtFromRot(rot)=(+1.0, 0.0, 0.0)
//
float3 rgt;
rgt.x = std::sin(HALFPI - r.z) * std::sin(r.y + HALFPI);
rgt.z = std::sin(HALFPI - r.z) * (-std::cos(r.y + HALFPI));
rgt.y = std::cos(HALFPI - r.z);
return rgt;
}
void CCamera::UpdateDirsFromRot(const float3 r)
{
forward = std::move(GetFwdFromRot(r));
right = std::move(GetRgtFromRot(r));
up = (right.cross(forward)).Normalize();
}
void CCamera::SetDir(const float3 dir)
{
// if (dir == forward) return;
// update our axis-system from the angles
SetRot(GetRotFromDir(dir) + (FwdVector * rot.z));
assert(dir.dot(forward) > 0.9f);
}
float3 CCamera::CalcPixelDir(int x, int y) const
{
const int vsx = std::max(1, globalRendering->viewSizeX);
const int vsy = std::max(1, globalRendering->viewSizeY);
const float dx = float(x - globalRendering->viewPosX - (vsx >> 1)) / vsy * (tanHalfFov * 2.0f);
const float dy = float(y - (vsy >> 1)) / vsy * (tanHalfFov * 2.0f);
const float3 dir = (forward - up * dy + right * dx).Normalize();
return dir;
}
float3 CCamera::CalcWindowCoordinates(const float3& objPos) const
{
// same as gluProject()
const float4 v = viewProjectionMatrix * float4(objPos, 1.0f);
float3 winPos;
winPos.x = viewport[0] + viewport[2] * (v.x / v.w + 1.0f) * 0.5f;
winPos.y = viewport[1] + viewport[3] * (v.y / v.w + 1.0f) * 0.5f;
winPos.z = (v.z / v.w + 1.0f) * 0.5f;
return winPos;
}
inline void CCamera::gluPerspectiveSpring(float aspect, float zn, float zf) {
const float t = zn * tanHalfFov;
const float b = -t;
const float l = b * aspect;
const float r = t * aspect;
glFrustumSpring(l, r, b, t, zn, zf);
}
inline void CCamera::glFrustumSpring(
const float l,
const float r,
const float b,
const float t,
const float zn,
const float zf
) {
projectionMatrix[ 0] = (2.0f * zn) / (r - l);
projectionMatrix[ 1] = 0.0f;
projectionMatrix[ 2] = 0.0f;
projectionMatrix[ 3] = 0.0f;
projectionMatrix[ 4] = 0.0f;
projectionMatrix[ 5] = (2.0f * zn) / (t - b);
projectionMatrix[ 6] = 0.0f;
projectionMatrix[ 7] = 0.0f;
projectionMatrix[ 8] = (r + l) / (r - l);
projectionMatrix[ 9] = (t + b) / (t - b);
projectionMatrix[10] = -(zf + zn) / (zf - zn);
projectionMatrix[11] = -1.0f;
projectionMatrix[12] = 0.0f;
projectionMatrix[13] = 0.0f;
projectionMatrix[14] = -(2.0f * zf * zn) / (zf - zn);
projectionMatrix[15] = 0.0f;
}
// same as glOrtho(-1, 1, -1, 1, zn, zf) plus glScalef(sx, sy, 1)
inline void CCamera::glOrthoScaledSpring(
const float sx,
const float sy,
const float zn,
const float zf
) {
const float l = -1.0f * sx;
const float r = 1.0f * sx;
const float b = -1.0f * sy;
const float t = 1.0f * sy;
glOrthoSpring(l, r, b, t, zn, zf);
}
inline void CCamera::glOrthoSpring(
const float l,
const float r,
const float b,
const float t,
const float zn,
const float zf
) {
const float tx = -(( r + l) / ( r - l));
const float ty = -(( t + b) / ( t - b));
const float tz = -((zf + zn) / (zf - zn));
projectionMatrix[ 0] = 2.0f / (r - l);
projectionMatrix[ 1] = 0.0f;
projectionMatrix[ 2] = 0.0f;
projectionMatrix[ 3] = 0.0f;
projectionMatrix[ 4] = 0.0f;
projectionMatrix[ 5] = 2.0f / (t - b);
projectionMatrix[ 6] = 0.0f;
projectionMatrix[ 7] = 0.0f;
projectionMatrix[ 8] = 0.0f;
projectionMatrix[ 9] = 0.0f;
projectionMatrix[10] = -2.0f / (zf - zn);
projectionMatrix[11] = 0.0f;
projectionMatrix[12] = tx;
projectionMatrix[13] = ty;
projectionMatrix[14] = tz;
projectionMatrix[15] = 1.0f;
}
inline void CCamera::gluLookAtSpring(const float3& eye, const float3& center, const float3& up)
{
const float3 f = (center - eye).ANormalize();
const float3 s = f.cross(up);
const float3 u = s.cross(f);
viewMatrix[ 0] = s.x;
viewMatrix[ 1] = u.x;
viewMatrix[ 2] = -f.x;
viewMatrix[ 4] = s.y;
viewMatrix[ 5] = u.y;
viewMatrix[ 6] = -f.y;
viewMatrix[ 8] = s.z;
viewMatrix[ 9] = u.z;
viewMatrix[10] = -f.z;
// save a glTranslated(-eye.x, -eye.y, -eye.z) call
viewMatrix[12] = ( s.x * -eye.x) + ( s.y * -eye.y) + ( s.z * -eye.z);
viewMatrix[13] = ( u.x * -eye.x) + ( u.y * -eye.y) + ( u.z * -eye.z);
viewMatrix[14] = (-f.x * -eye.x) + (-f.y * -eye.y) + (-f.z * -eye.z);
}
void CCamera::GetFrustumSides(float miny, float maxy, float scale, bool negOnly) {
frustumLines[FRUSTUM_SIDE_POS].clear();
frustumLines[FRUSTUM_SIDE_NEG].clear();
// only non-zero for orthographic cameras
const float3 posOffsets[FRUSTUM_PLANE_FRN] = {
-right * frustumScales.x,
right * frustumScales.x,
up * frustumScales.y,
-up * frustumScales.y,
};
// note: order does not matter
for (unsigned int i = 0; i < FRUSTUM_PLANE_FRN; i++) {
GetFrustumSide(frustumPlanes[i], posOffsets[i], miny, maxy, scale, negOnly? FRUSTUM_SIDE_NEG: FRUSTUM_SIDE_POS);
}
}
void CCamera::GetFrustumSide(
const float3& normal,
const float3& offset,
float miny,
float maxy,
float scale,
unsigned int side
) {
// compose an orthonormal axis-system around <normal>
float3 xdir = (normal.cross(UpVector)).UnsafeANormalize();
float3 ydir = (normal.cross(xdir)).UnsafeANormalize();
// intersection of vector from <pos> along <ydir> with xz-plane
float3 pInt;
// prevent DIV0 when calculating line.dir
if (math::fabs(xdir.z) < 0.001f)
xdir.z = 0.001f;
if (ydir.y != 0.0f) {
// if normal is angled toward the sky instead of the ground,
// subtract <miny> from the camera's y-position, else <maxy>
if (normal.y > 0.0f) {
pInt = (pos + offset) - ydir * (((pos.y + offset.y) - miny) / ydir.y);
} else {
pInt = (pos + offset) - ydir * (((pos.y + offset.y) - maxy) / ydir.y);
}
}
// <line.dir> is the direction coefficient (0 ==> parallel to z-axis, inf ==> parallel to x-axis)
// in the xz-plane; <line.base> is the x-coordinate at which line intersects x-axis; <line.sign>
// indicates line direction, ie. left-to-right (whenever <xdir.z> is negative) or right-to-left
// NOTE:
// (b.x / b.z) is actually the reciprocal of the DC (ie. the number of steps along +x for
// one step along +y); the world z-axis is inverted wrt. a regular Carthesian grid, so the
// DC is also inverted
FrustumLine line;
line.dir = (xdir.x / xdir.z);
line.base = (pInt.x - (pInt.z * line.dir)) / scale;
line.sign = Sign(int(xdir.z <= 0.0f));
line.minz = ( 0.0f) - (mapDims.mapy);
line.maxz = (mapDims.mapy * SQUARE_SIZE) + (mapDims.mapy);
// store all lines in [NEG] (regardless of actual sign) if wanted by caller
frustumLines[line.sign == 1 || side == FRUSTUM_SIDE_NEG].push_back(line);
}
void CCamera::ClipFrustumLines(bool neg, const float zmin, const float zmax) {
std::vector<FrustumLine>& lines = frustumLines[neg];
std::vector<FrustumLine>::iterator fli, fli2;
for (fli = lines.begin(); fli != lines.end(); ++fli) {
for (fli2 = lines.begin(); fli2 != lines.end(); ++fli2) {
if (fli == fli2)
continue;
const float dbase = fli->base - fli2->base;
const float ddir = fli->dir - fli2->dir;
if (ddir == 0.0f)
continue;
const float colz = -(dbase / ddir);
if ((fli2->sign * ddir) > 0.0f) {
if ((colz > fli->minz) && (colz < zmax))
fli->minz = colz;
} else {
if ((colz < fli->maxz) && (colz > zmin))
fli->maxz = colz;
}
}
}
}
float3 CCamera::GetMoveVectorFromState(bool fromKeyState) const
{
float camDeltaTime = globalRendering->lastFrameTime;
float camMoveSpeed = 1.0f;
camMoveSpeed *= (1.0f - movState[MOVE_STATE_SLW] * 0.9f);
camMoveSpeed *= (1.0f + movState[MOVE_STATE_FST] * 9.0f);
float3 v;
if (fromKeyState) {
v.y += (camDeltaTime * 0.001f * movState[MOVE_STATE_FWD]);
v.y -= (camDeltaTime * 0.001f * movState[MOVE_STATE_BCK]);
v.x += (camDeltaTime * 0.001f * movState[MOVE_STATE_RGT]);
v.x -= (camDeltaTime * 0.001f * movState[MOVE_STATE_LFT]);
} else {
const int screenH = globalRendering->viewSizeY;
const int screenW = globalRendering->dualScreenMode?
(globalRendering->viewSizeX << 1):
(globalRendering->viewSizeX );
const float width = configHandler->GetFloat("EdgeMoveWidth");
const bool dynamic = configHandler->GetBool("EdgeMoveDynamic");
int2 border;
border.x = std::max<int>(1, screenW * width);
border.y = std::max<int>(1, screenH * width);
float2 distToEdge; // must be float, ints don't save the sign in case of 0 and we need it for copysign()
distToEdge.x = Clamp(mouse->lastx, 0, screenW);
distToEdge.y = Clamp(mouse->lasty, 0, screenH);
if (((screenW-1) - distToEdge.x) < distToEdge.x) distToEdge.x = -((screenW-1) - distToEdge.x);
if (((screenH-1) - distToEdge.y) < distToEdge.y) distToEdge.y = -((screenH-1) - distToEdge.y);
distToEdge.x = -distToEdge.x;
float2 move;
if (dynamic) {
move.x = Clamp(float(border.x - std::abs(distToEdge.x)) / border.x, 0.f, 1.f);
move.y = Clamp(float(border.y - std::abs(distToEdge.y)) / border.y, 0.f, 1.f);
} else {
move.x = int(std::abs(distToEdge.x) < border.x);
move.y = int(std::abs(distToEdge.y) < border.y);
}
move.x = std::copysign(move.x, distToEdge.x);
move.y = std::copysign(move.y, distToEdge.y);
v.x = (camDeltaTime * 0.001f * move.x);
v.y = (camDeltaTime * 0.001f * move.y);
}
v.z = camMoveSpeed;
return v;
}
|