1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
//
// ROAM Simplistic Implementation
// Added to Spring by Peter Sarkozy (mysterme AT gmail DOT com)
// Billion thanks to Bryan Turner (Jan, 2000)
// brturn@bellsouth.net
//
// Based on the Tread Marks engine by Longbow Digital Arts
// (www.LongbowDigitalArts.com)
// Much help and hints provided by Seumas McNally, LDA.
//
#include "Patch.h"
#include "RoamMeshDrawer.h"
#include "Game/Camera.h"
#include "Map/ReadMap.h"
#include "Map/SMF/SMFGroundDrawer.h"
#include "Rendering/GlobalRendering.h"
#include "Rendering/GL/VertexArray.h"
#include "System/Log/ILog.h"
#include "System/ThreadPool.h"
#include "System/TimeProfiler.h"
#include <climits>
// -------------------------------------------------------------------------------------------------
// -------------------------------------------------------------------------------------------------
// STATICS
static int MAX_POOL_SIZE = 8000000;
Patch::RenderMode Patch::renderMode = Patch::VBO;
// one pool per thread
static size_t poolSize = 0;
static std::vector<CTriNodePool> pools[CRoamMeshDrawer::MESH_COUNT];
void CTriNodePool::InitPools(bool shadowPass, size_t newPoolSize)
{
if (!pools[shadowPass].empty())
return;
// int numThreads = GetNumThreads();
int numThreads = ThreadPool::GetMaxThreads();
const size_t allocPerThread = std::max(newPoolSize / numThreads, newPoolSize / 3) & (~(size_t)0x1);
try {
poolSize = newPoolSize;
pools[shadowPass].reserve(numThreads);
for (; numThreads > 0; --numThreads) {
pools[shadowPass].emplace_back(allocPerThread);
}
} catch(const std::bad_alloc& e) {
LOG_L(L_FATAL, "Failed to allocate memory for ROAM (reducing pool size): %s", e.what());
MAX_POOL_SIZE = newPoolSize * 0.75f;
FreePools(shadowPass);
InitPools(shadowPass, MAX_POOL_SIZE);
}
}
void CTriNodePool::FreePools(bool shadowPass)
{
pools[shadowPass].clear();
}
void CTriNodePool::ResetAll(bool shadowPass)
{
bool outOfNodes = false;
for (CTriNodePool& pool: pools[shadowPass]) {
outOfNodes |= pool.OutOfNodes();
pool.Reset();
}
if (outOfNodes && (poolSize < MAX_POOL_SIZE)) {
FreePools(shadowPass);
InitPools(shadowPass, std::min<size_t>(poolSize * 2, MAX_POOL_SIZE));
}
}
CTriNodePool* CTriNodePool::GetPool(bool shadowPass)
{
return &(pools[shadowPass][ThreadPool::GetThreadNum()]);
}
// -------------------------------------------------------------------------------------------------
// -------------------------------------------------------------------------------------------------
// CTriNodePool Class
CTriNodePool::CTriNodePool(const size_t poolSize)
{
assert((poolSize & 0x1) == 0); // we always allocate left & right, so we need an even pool
m_NextTriNode = 0;
pool.resize(poolSize);
}
void CTriNodePool::Reset()
{
// reinit all entries to NULL
// this saves use calling TriTreeNode's ctor which is slower than a memset
if (m_NextTriNode > 0)
memset(&pool[0], 0, sizeof(TriTreeNode) * m_NextTriNode);
m_NextTriNode = 0;
}
void CTriNodePool::Allocate(TriTreeNode*& left, TriTreeNode*& right)
{
// IF we've run out of TriTreeNodes, just return NULL (this is handled gracefully)
if (OutOfNodes())
return;
left = &(pool[m_NextTriNode++]);
right = &(pool[m_NextTriNode++]);
}
// -------------------------------------------------------------------------------------------------
// -------------------------------------------------------------------------------------------------
// Patch Class
//
Patch::Patch()
: smfGroundDrawer(nullptr)
, currentVariance(nullptr)
, currentPool(nullptr)
, isDirty(true)
, vboVerticesUploaded(false)
, varianceMaxLimit(std::numeric_limits<float>::max())
, camDistLODFactor(1.0f)
, coors(-1, -1)
, triList(0)
, vertexBuffer(0)
, vertexIndexBuffer(0)
{
varianceLeft.resize(1 << VARIANCE_DEPTH);
varianceRight.resize(1 << VARIANCE_DEPTH);
// NOTE:
// shadow-mesh patches are only ever viewed by one camera
// normal-mesh patches can be viewed by *multiple* types!
lastDrawFrames.resize(CCamera::CAMTYPE_VISCUL);
}
Patch::~Patch()
{
glDeleteLists(triList, 1);
if (GLEW_ARB_vertex_buffer_object) {
glDeleteBuffersARB(1, &vertexBuffer);
glDeleteBuffersARB(1, &vertexIndexBuffer);
}
triList = 0;
vertexBuffer = 0;
vertexIndexBuffer = 0;
}
void Patch::Init(CSMFGroundDrawer* _drawer, int patchX, int patchZ)
{
coors.x = patchX;
coors.y = patchZ;
smfGroundDrawer = _drawer;
// Store pointer to first byte of the height data for this patch.
// Attach the two m_Base triangles together
baseLeft.BaseNeighbor = &baseRight;
baseRight.BaseNeighbor = &baseLeft;
// Create used OpenGL objects
triList = glGenLists(1);
if (GLEW_ARB_vertex_buffer_object) {
glGenBuffersARB(1, &vertexBuffer);
glGenBuffersARB(1, &vertexIndexBuffer);
}
vertices.resize(3 * (PATCH_SIZE + 1) * (PATCH_SIZE + 1));
unsigned int index = 0;
// initialize vertices
for (int z = coors.y; z <= (coors.y + PATCH_SIZE); z++) {
for (int x = coors.x; x <= (coors.x + PATCH_SIZE); x++) {
vertices[index++] = x * SQUARE_SIZE;
vertices[index++] = 0.0f;
vertices[index++] = z * SQUARE_SIZE;
}
}
UpdateHeightMap();
}
void Patch::Reset()
{
// Reset the important relationships
baseLeft = TriTreeNode();
baseRight = TriTreeNode();
// Attach the two m_Base triangles together
baseLeft.BaseNeighbor = &baseRight;
baseRight.BaseNeighbor = &baseLeft;
}
void Patch::UpdateHeightMap(const SRectangle& rect)
{
const float* hMap = readMap->GetCornerHeightMapUnsynced();
for (int z = rect.z1; z <= rect.z2; z++) {
for (int x = rect.x1; x <= rect.x2; x++) {
const int vindex = (z * (PATCH_SIZE + 1) + x) * 3;
const int xw = x + coors.x;
const int zw = z + coors.y;
// only update y-coord
vertices[vindex + 1] = hMap[zw * mapDims.mapxp1 + xw];
}
}
VBOUploadVertices();
isDirty = true;
}
void Patch::VBOUploadVertices()
{
if (renderMode == VBO) {
// Upload vertexBuffer
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vertexBuffer);
glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertices.size() * sizeof(float), &vertices[0], GL_STATIC_DRAW_ARB);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
vboVerticesUploaded = true;
} else {
vboVerticesUploaded = false;
}
}
// -------------------------------------------------------------------------------------------------
// Split a single Triangle and link it into the mesh.
// Will correctly force-split diamonds.
//
void Patch::Split(TriTreeNode* tri)
{
// We are already split, no need to do it again.
if (!tri->IsLeaf())
return;
// If this triangle is not in a proper diamond, force split our base neighbor
if (tri->BaseNeighbor && (tri->BaseNeighbor->BaseNeighbor != tri))
Split(tri->BaseNeighbor);
// Create children and link into mesh
currentPool->Allocate(tri->LeftChild, tri->RightChild);
// If creation failed, just exit.
if (!tri->IsBranch()) {
// make sure both nodes are NULL if just the right one failed
// special handling the cause that only one of them is NULL wouldn't make sense (only less performance)
tri->LeftChild = nullptr;
tri->RightChild = nullptr;
return;
}
// Fill in the information we can get from the parent (neighbor pointers)
tri->LeftChild->BaseNeighbor = tri->LeftNeighbor;
tri->LeftChild->LeftNeighbor = tri->RightChild;
tri->RightChild->BaseNeighbor = tri->RightNeighbor;
tri->RightChild->RightNeighbor = tri->LeftChild;
// Link our Left Neighbor to the new children
if (tri->LeftNeighbor != nullptr) {
if (tri->LeftNeighbor->BaseNeighbor == tri)
tri->LeftNeighbor->BaseNeighbor = tri->LeftChild;
else if (tri->LeftNeighbor->LeftNeighbor == tri)
tri->LeftNeighbor->LeftNeighbor = tri->LeftChild;
else if (tri->LeftNeighbor->RightNeighbor == tri)
tri->LeftNeighbor->RightNeighbor = tri->LeftChild;
else
;// Illegal Left Neighbor!
}
// Link our Right Neighbor to the new children
if (tri->RightNeighbor != nullptr) {
if (tri->RightNeighbor->BaseNeighbor == tri)
tri->RightNeighbor->BaseNeighbor = tri->RightChild;
else if (tri->RightNeighbor->RightNeighbor == tri)
tri->RightNeighbor->RightNeighbor = tri->RightChild;
else if (tri->RightNeighbor->LeftNeighbor == tri)
tri->RightNeighbor->LeftNeighbor = tri->RightChild;
else
;// Illegal Right Neighbor!
}
// Link our Base Neighbor to the new children
if (tri->BaseNeighbor != nullptr) {
if (tri->BaseNeighbor->IsBranch()) {
tri->BaseNeighbor->LeftChild->RightNeighbor = tri->RightChild;
tri->BaseNeighbor->RightChild->LeftNeighbor = tri->LeftChild;
tri->LeftChild->RightNeighbor = tri->BaseNeighbor->RightChild;
tri->RightChild->LeftNeighbor = tri->BaseNeighbor->LeftChild;
} else {
// Base Neighbor (in a diamond with us) was not split yet, so do that now.
Split(tri->BaseNeighbor);
}
} else {
// An edge triangle, trivial case.
tri->LeftChild->RightNeighbor = nullptr;
tri->RightChild->LeftNeighbor = nullptr;
}
}
// ---------------------------------------------------------------------
// Tessellate a Patch.
// Will continue to split until the variance metric is met.
//
void Patch::RecursTessellate(TriTreeNode* tri, const int2 left, const int2 right, const int2 apex, const int node)
{
// bail if we can not tessellate further in at least one dimension
if ((abs(left.x - right.x) <= 1) && (abs(left.y - right.y) <= 1))
return;
// default > 1; when variance isn't saved this issues further tessellation
float TriVariance = 10.0f;
if (node < (1 << VARIANCE_DEPTH)) {
// make max tessellation viewRadius dependent
// w/o this huge cliffs cause huge variances and will always tessellate
// fully independent of camdist (-> huge/distfromcam ~= huge)
const float myVariance = std::min(currentVariance[node], varianceMaxLimit);
const int sizeX = std::max(left.x - right.x, right.x - left.x);
const int sizeY = std::max(left.y - right.y, right.y - left.y);
const int size = std::max(sizeX, sizeY);
// take distance, variance and patch size into consideration
TriVariance = (myVariance * PATCH_SIZE * size) * camDistLODFactor;
}
// stop tesselation
if (TriVariance <= 1.0f)
return;
Split(tri);
if (tri->IsBranch()) {
// triangle was split, also try to split its children
const int2 center = {(left.x + right.x) >> 1, (left.y + right.y) >> 1};
RecursTessellate(tri->LeftChild, apex, left, center, (node << 1) );
RecursTessellate(tri->RightChild, right, apex, center, (node << 1) + 1);
}
}
// ---------------------------------------------------------------------
// Render the tree.
//
void Patch::RecursRender(const TriTreeNode* tri, const int2 left, const int2 right, const int2 apex)
{
if (tri->IsLeaf()) {
indices.push_back(apex.x + apex.y * (PATCH_SIZE + 1));
indices.push_back(left.x + left.y * (PATCH_SIZE + 1));
indices.push_back(right.x + right.y * (PATCH_SIZE + 1));
return;
}
const int2 center = {(left.x + right.x) >> 1, (left.y + right.y) >> 1};
RecursRender(tri->LeftChild, apex, left, center);
RecursRender(tri->RightChild, right, apex, center);
}
void Patch::GenerateIndices()
{
indices.clear();
RecursRender(&baseLeft, int2( 0, PATCH_SIZE), int2(PATCH_SIZE, 0), int2( 0, 0));
RecursRender(&baseRight, int2(PATCH_SIZE, 0), int2( 0, PATCH_SIZE), int2(PATCH_SIZE, PATCH_SIZE));
}
float Patch::GetHeight(int2 pos)
{
const int vindex = (pos.y * (PATCH_SIZE + 1) + pos.x) * 3 + 1;
assert(readMap->GetCornerHeightMapUnsynced()[(coors.y + pos.y) * mapDims.mapxp1 + (coors.x + pos.x)] == vertices[vindex]);
return vertices[vindex];
}
// ---------------------------------------------------------------------
// Computes Variance over the entire tree. Does not examine node relationships.
//
float Patch::RecursComputeVariance(
const int2 left,
const int2 rght,
const int2 apex,
const float3 hgts,
const int node
) {
/* A
* /|\
* / | \
* / | \
* / | \
* L----M----R
*
* first compute the XZ coordinates of 'M' (hypotenuse middle)
*/
const int2 mpos = {(left.x + rght.x) >> 1, (left.y + rght.y) >> 1};
// get the height value at M
const float mhgt = GetHeight(mpos);
// variance of this triangle is the actual height at its hypotenuse
// midpoint minus the interpolated height; use values passed on the
// stack instead of re-accessing the heightmap
float myVariance = math::fabs(mhgt - ((hgts.x + hgts.y) * 0.5f));
// shore lines get more variance for higher accuracy
// NOTE: .x := height(L), .y := height(R), .z := height(A)
//
if ((hgts.x * hgts.y) < 0.0f || (hgts.x * mhgt) < 0.0f || (hgts.y * mhgt) < 0.0f)
myVariance = std::max(myVariance * 1.5f, 20.0f);
// myVariance = MAX(abs(left.x - rght.x), abs(left.y - rght.y)) * myVariance;
// save some CPU, only calculate variance down to a 4x4 block
if ((abs(left.x - rght.x) >= 4) || (abs(left.y - rght.y) >= 4)) {
const float3 hgts1 = {hgts.z, hgts.x, mhgt};
const float3 hgts2 = {hgts.y, hgts.z, mhgt};
const float child1Variance = RecursComputeVariance(apex, left, mpos, hgts1, (node << 1) );
const float child2Variance = RecursComputeVariance(rght, apex, mpos, hgts2, (node << 1) + 1);
// final variance for this node is the max of its own variance and that of its children
myVariance = std::max(myVariance, child1Variance);
myVariance = std::max(myVariance, child2Variance);
}
// NOTE: Variance is never zero
myVariance = std::max(0.001f, myVariance);
// store the final variance for this node
if (node < (1 << VARIANCE_DEPTH))
currentVariance[node] = myVariance;
return myVariance;
}
// ---------------------------------------------------------------------
// Compute the variance tree for each of the Binary Triangles in this patch.
//
void Patch::ComputeVariance()
{
{
currentVariance = &varianceLeft[0];
const int2 left = { 0, PATCH_SIZE};
const int2 rght = {PATCH_SIZE, 0};
const int2 apex = { 0, 0};
const float3 hgts = {
GetHeight(left),
GetHeight(rght),
GetHeight(apex),
};
RecursComputeVariance(left, rght, apex, hgts, 1);
}
{
currentVariance = &varianceRight[0];
const int2 left = {PATCH_SIZE, 0};
const int2 rght = { 0, PATCH_SIZE};
const int2 apex = {PATCH_SIZE, PATCH_SIZE};
const float3 hgts = {
GetHeight(left),
GetHeight(rght),
GetHeight(apex),
};
RecursComputeVariance(left, rght, apex, hgts, 1);
}
// Clear the dirty flag for this patch
isDirty = false;
}
// ---------------------------------------------------------------------
// Create an approximate mesh.
//
bool Patch::Tessellate(const float3& campos, int groundDetail, bool shadowPass)
{
// Set/Update LOD params (FIXME: wrong height?)
const float myx = (coors.x + PATCH_SIZE / 2) * SQUARE_SIZE;
const float myz = (coors.y + PATCH_SIZE / 2) * SQUARE_SIZE;
const float myy = (readMap->GetCurrMinHeight() + readMap->GetCurrMaxHeight()) * 0.5f;
const float3 myPos(myx, myy, myz);
currentPool = CTriNodePool::GetPool(shadowPass);
camDistLODFactor = myPos.distance(campos);
camDistLODFactor *= 300.0f / groundDetail; // MAGIC NUMBER 1: increase the dividend to reduce LOD in camera distance
camDistLODFactor = std::max(1.0f, camDistLODFactor);
camDistLODFactor = 1.0f / camDistLODFactor;
// MAGIC NUMBER 2:
// variances are clamped by it, so it regulates how strong areas are tessellated.
// Note, the maximum tessellation is untouched by it. Instead it reduces the maximum
// LOD in distance, while the param above defines the overall FallOff rate.
varianceMaxLimit = groundDetail * 0.35f;
{
// Split each of the base triangles
currentVariance = &varianceLeft[0];
const int2 left = {coors.x, coors.y + PATCH_SIZE};
const int2 rght = {coors.x + PATCH_SIZE, coors.y };
const int2 apex = {coors.x, coors.y };
RecursTessellate(&baseLeft, left, rght, apex, 1);
}
{
currentVariance = &varianceRight[0];
const int2 left = {coors.x + PATCH_SIZE, coors.y };
const int2 rght = {coors.x, coors.y + PATCH_SIZE};
const int2 apex = {coors.x + PATCH_SIZE, coors.y + PATCH_SIZE};
RecursTessellate(&baseRight, left, rght, apex, 1);
}
return (!currentPool->OutOfNodes());
}
// ---------------------------------------------------------------------
// Render the mesh.
//
void Patch::Draw()
{
switch (renderMode) {
case VA: {
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, &vertices[0]);
glDrawRangeElements(GL_TRIANGLES, 0, vertices.size(), indices.size(), GL_UNSIGNED_INT, &indices[0]);
glDisableClientState(GL_VERTEX_ARRAY);
} break;
case DL: {
glCallList(triList);
} break;
case VBO: {
// enable VBOs
glBindBufferARB(GL_ARRAY_BUFFER_ARB, vertexBuffer); // coors
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, vertexIndexBuffer); // indices
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, 0); // last param is offset, not ptr
glDrawRangeElements(GL_TRIANGLES, 0, vertices.size(), indices.size(), GL_UNSIGNED_INT, 0);
glDisableClientState(GL_VERTEX_ARRAY);
// disable VBO mode
glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
} break;
default: {
assert(false);
} break;
}
}
void Patch::DrawBorder()
{
CVertexArray* va = GetVertexArray();
GenerateBorderIndices(va);
va->DrawArrayC(GL_TRIANGLES);
}
void Patch::RecursBorderRender(
CVertexArray* va,
const TriTreeNode* tri,
const int2 left,
const int2 rght,
const int2 apex,
int depth,
bool leftChild
) {
if (tri->IsLeaf()) {
const float3& v1 = *(float3*)&vertices[(apex.x + apex.y * (PATCH_SIZE + 1))*3];
const float3& v2 = *(float3*)&vertices[(left.x + left.y * (PATCH_SIZE + 1))*3];
const float3& v3 = *(float3*)&vertices[(rght.x + rght.y * (PATCH_SIZE + 1))*3];
static const unsigned char white[] = {255,255,255,255};
static const unsigned char trans[] = {255,255,255,0};
va->EnlargeArrays(6, 0, VA_SIZE_C);
if ((depth & 1) == 0) {
va->AddVertexQC(v2, white);
va->AddVertexQC(float3(v2.x, -400.0f, v2.z), trans);
va->AddVertexQC(float3(v3.x, v3.y, v3.z), white);
va->AddVertexQC(v3, white);
va->AddVertexQC(float3(v2.x, -400.0f, v2.z), trans);
va->AddVertexQC(float3(v3.x, -400.0f, v3.z), trans);
} else {
if (leftChild) {
va->AddVertexQC(v1, white);
va->AddVertexQC(float3(v1.x, -400.0f, v1.z), trans);
va->AddVertexQC(float3(v2.x, v2.y, v2.z), white);
va->AddVertexQC(v2, white);
va->AddVertexQC(float3(v1.x, -400.0f, v1.z), trans);
va->AddVertexQC(float3(v2.x, -400.0f, v2.z), trans);
} else {
va->AddVertexQC(v3, white);
va->AddVertexQC(float3(v3.x, -400.0f, v3.z), trans);
va->AddVertexQC(float3(v1.x, v1.y, v1.z), white);
va->AddVertexQC(v1, white);
va->AddVertexQC(float3(v3.x, -400.0f, v3.z), trans);
va->AddVertexQC(float3(v1.x, -400.0f, v1.z), trans);
}
}
return;
}
const int2 center = {(left.x + rght.x) >> 1, (left.y + rght.y) >> 1};
if ((depth & 1) == 0) {
RecursBorderRender(va, tri->LeftChild, apex, left, center, depth + 1, !leftChild);
return RecursBorderRender(va, tri->RightChild, rght, apex, center, depth + 1, leftChild); // return is needed for tail call optimization (it's still unlikely gcc does so...)
}
if (leftChild) {
return RecursBorderRender(va, tri->LeftChild, apex, left, center, depth + 1, leftChild);
} else {
return RecursBorderRender(va, tri->RightChild, rght, apex, center, depth + 1, !leftChild);
}
}
void Patch::GenerateBorderIndices(CVertexArray* va)
{
va->Initialize();
const bool isLeftBorder = (baseLeft.LeftNeighbor == nullptr);
const bool isBottomBorder = (baseRight.RightNeighbor == nullptr);
const bool isRightBorder = (baseLeft.RightNeighbor == nullptr);
const bool isTopBorder = (baseRight.LeftNeighbor == nullptr);
if (isLeftBorder) RecursBorderRender(va, &baseLeft, int2(0, PATCH_SIZE), int2(PATCH_SIZE, 0), int2(0, 0), 1, true);
if (isBottomBorder) RecursBorderRender(va, &baseRight, int2(PATCH_SIZE, 0), int2(0, PATCH_SIZE), int2(PATCH_SIZE, PATCH_SIZE), 1, false);
if (isRightBorder) RecursBorderRender(va, &baseLeft, int2(0, PATCH_SIZE), int2(PATCH_SIZE, 0), int2(0, 0), 1, false);
if (isTopBorder) RecursBorderRender(va, &baseRight, int2(PATCH_SIZE, 0), int2(0, PATCH_SIZE), int2(PATCH_SIZE, PATCH_SIZE), 1, true);
}
void Patch::Upload()
{
switch (renderMode) {
case DL: {
glNewList(triList, GL_COMPILE);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, &vertices[0]);
glDrawRangeElements(GL_TRIANGLES, 0, vertices.size(), indices.size(), GL_UNSIGNED_INT, &indices[0]);
glDisableClientState(GL_VERTEX_ARRAY);
glEndList();
} break;
case VBO: {
if (!vboVerticesUploaded) VBOUploadVertices();
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, vertexIndexBuffer);
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, indices.size() * sizeof(unsigned), &indices[0], GL_DYNAMIC_DRAW_ARB);
/*
int bufferSize = 0;
glGetBufferParameterivARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_BUFFER_SIZE_ARB, &bufferSize);
if(rend != bufferSize) {
glDeleteBuffersARB(1, &vertexIndexBuffer);
LOG( "[createVBO()] Data size is mismatch with input array\n" );
}
*/
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0);
} break;
default: {
} break;
}
}
void Patch::SetSquareTexture() const
{
smfGroundDrawer->SetupBigSquare(coors.x / PATCH_SIZE, coors.y / PATCH_SIZE);
}
void Patch::SwitchRenderMode(int mode)
{
if (mode < 0) {
mode = renderMode + 1;
mode %= 3;
}
if (!GLEW_ARB_vertex_buffer_object && mode == VBO) {
mode = DL;
}
if (mode == renderMode)
return;
switch (mode) {
case VA: {
LOG("Set ROAM mode to VA");
renderMode = VA;
} break;
case DL: {
LOG("Set ROAM mode to DisplayLists");
renderMode = DL;
} break;
case VBO: {
LOG("Set ROAM mode to VBO");
renderMode = VBO;
} break;
}
CRoamMeshDrawer::ForceTesselation();
}
// ---------------------------------------------------------------------
// Visibility Update Functions
//
#if 0
void Patch::UpdateVisibility(CCamera* cam)
{
const float3 mins( coors.x * SQUARE_SIZE, readMap->GetCurrMinHeight(), coors.y * SQUARE_SIZE);
const float3 maxs((coors.x + PATCH_SIZE) * SQUARE_SIZE, readMap->GetCurrMaxHeight(), (coors.y + PATCH_SIZE) * SQUARE_SIZE);
if (!cam->InView(mins, maxs))
return;
lastDrawFrames[cam->GetCamType()] = globalRendering->drawFrame;
}
#endif
class CPatchInViewChecker : public CReadMap::IQuadDrawer
{
public:
void ResetState() {}
void ResetState(CCamera* c = nullptr, Patch* p = nullptr, int xsize = 0) {
testCamera = c;
patchArray = p;
numPatchesX = xsize;
}
void DrawQuad(int x, int y) {
patchArray[y * numPatchesX + x].lastDrawFrames[testCamera->GetCamType()] = globalRendering->drawFrame;
}
private:
CCamera* testCamera;
Patch* patchArray;
int numPatchesX;
};
void Patch::UpdateVisibility(CCamera* cam, std::vector<Patch>& patches, const int numPatchesX)
{
#if 0
// very slow
for (Patch& p: patches) {
p.UpdateVisibility(cam);
}
#else
// very fast
static CPatchInViewChecker checker;
assert(cam->GetCamType() < CCamera::CAMTYPE_VISCUL);
checker.ResetState(cam, &patches[0], numPatchesX);
cam->GetFrustumSides(readMap->GetCurrMinHeight() - 100.0f, readMap->GetCurrMaxHeight() + 100.0f, SQUARE_SIZE);
readMap->GridVisibility(cam, &checker, 1e9, PATCH_SIZE);
#endif
}
bool Patch::IsVisible(const CCamera* cam) const {
return (lastDrawFrames[cam->GetCamType()] >= globalRendering->drawFrame);
}
|