1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "System/Platform/Win/win32.h"
#include "PathEstimator.h"
#include <fstream>
#include <boost/bind.hpp>
#include <boost/thread/barrier.hpp>
#include <boost/thread/thread.hpp>
#include "minizip/zip.h"
#include "PathFinder.h"
#include "PathFinderDef.h"
#include "PathFlowMap.hpp"
#include "PathLog.h"
#include "Game/LoadScreen.h"
#include "Sim/Misc/GroundBlockingObjectMap.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "Sim/MoveTypes/MoveMath/MoveMath.h"
#include "Net/Protocol/NetProtocol.h"
#include "System/ThreadPool.h"
#include "System/TimeProfiler.h"
#include "System/Config/ConfigHandler.h"
#include "System/FileSystem/Archives/IArchive.h"
#include "System/FileSystem/ArchiveLoader.h"
#include "System/FileSystem/DataDirsAccess.h"
#include "System/FileSystem/FileSystem.h"
#include "System/FileSystem/FileQueryFlags.h"
#include "System/Platform/Threading.h"
#include "System/Sync/HsiehHash.h"
CONFIG(int, MaxPathCostsMemoryFootPrint).defaultValue(512).minimumValue(64).description("Maximum memusage (in MByte) of mutlithreaded pathcache generator at loading time.");
static const std::string GetPathCacheDir() {
return (FileSystem::GetCacheDir() + "/paths/");
}
static size_t GetNumThreads() {
const size_t numThreads = std::max(0, configHandler->GetInt("PathingThreadCount"));
const size_t numCores = Threading::GetLogicalCpuCores();
return ((numThreads == 0)? numCores: numThreads);
}
CPathEstimator::CPathEstimator(IPathFinder* pf, unsigned int BLOCK_SIZE, const std::string& cacheFileName, const std::string& mapFileName)
: IPathFinder(BLOCK_SIZE)
, BLOCKS_TO_UPDATE(SQUARES_TO_UPDATE / (BLOCK_SIZE * BLOCK_SIZE) + 1)
, nextOffsetMessageIdx(0)
, nextCostMessageIdx(0)
, pathChecksum(0)
, offsetBlockNum(nbrOfBlocks.x * nbrOfBlocks.y)
, costBlockNum(nbrOfBlocks.x * nbrOfBlocks.y)
, pathFinder(pf)
, nextPathEstimator(nullptr)
, blockUpdatePenalty(0)
{
vertexCosts.resize(moveDefHandler->GetNumMoveDefs() * blockStates.GetSize() * PATH_DIRECTION_VERTICES, PATHCOST_INFINITY);
if (dynamic_cast<CPathEstimator*>(pf) != nullptr) {
dynamic_cast<CPathEstimator*>(pf)->nextPathEstimator = this;
}
// precalc for FindOffset()
{
offsetBlocksSortedByCost.reserve(BLOCK_SIZE * BLOCK_SIZE);
for (unsigned int z = 0; z < BLOCK_SIZE; ++z) {
for (unsigned int x = 0; x < BLOCK_SIZE; ++x) {
const float dx = x - (float)(BLOCK_SIZE - 1) * 0.5f;
const float dz = z - (float)(BLOCK_SIZE - 1) * 0.5f;
const float cost = (dx * dx + dz * dz);
offsetBlocksSortedByCost.emplace_back(cost, x, z);
}
}
std::stable_sort(offsetBlocksSortedByCost.begin(), offsetBlocksSortedByCost.end(), [](const SOffsetBlock a, const SOffsetBlock b) {
return a.cost < b.cost;
});
}
// load precalculated data if it exists
InitEstimator(cacheFileName, mapFileName);
}
CPathEstimator::~CPathEstimator()
{
delete pathCache[0]; pathCache[0] = NULL;
delete pathCache[1]; pathCache[1] = NULL;
}
const int2* CPathEstimator::GetDirectionVectorsTable() {
return (&PE_DIRECTION_VECTORS[0]);
}
void CPathEstimator::InitEstimator(const std::string& cacheFileName, const std::string& map)
{
const unsigned int numThreads = GetNumThreads();
if (threads.size() != numThreads) {
threads.resize(numThreads);
pathFinders.resize(numThreads);
}
// always use PF for initialization, later PE maybe used
pathFinders[0] = new CPathFinder();
// Not much point in multithreading these...
InitBlocks();
if (!ReadFile(cacheFileName, map)) {
// start extra threads if applicable, but always keep the total
// memory-footprint made by CPathFinder instances within bounds
const unsigned int minMemFootPrint = sizeof(CPathFinder) + pathFinder->GetMemFootPrint();
const unsigned int maxMemFootPrint = configHandler->GetInt("MaxPathCostsMemoryFootPrint") * 1024 * 1024;
const unsigned int numExtraThreads = Clamp(int(maxMemFootPrint / minMemFootPrint) - 1, 0, int(numThreads) - 1);
const unsigned int reqMemFootPrint = minMemFootPrint * (numExtraThreads + 1);
{
char calcMsg[512];
const char* fmtString = (numExtraThreads > 0)?
"PathCosts: creating PE%u cache with %u PF threads (%u MB)":
"PathCosts: creating PE%u cache with %u PF thread (%u MB)";
sprintf(calcMsg, fmtString, BLOCK_SIZE, numExtraThreads + 1, reqMemFootPrint / (1024 * 1024));
loadscreen->SetLoadMessage(calcMsg);
}
// note: only really needed if numExtraThreads > 0
pathBarrier = new boost::barrier(numExtraThreads + 1);
for (unsigned int i = 1; i <= numExtraThreads; i++) {
pathFinders[i] = new CPathFinder();
threads[i] = new boost::thread(boost::bind(&CPathEstimator::CalcOffsetsAndPathCosts, this, i));
}
// Use the current thread as thread zero
CalcOffsetsAndPathCosts(0);
for (unsigned int i = 1; i <= numExtraThreads; i++) {
threads[i]->join();
delete threads[i];
delete pathFinders[i];
}
delete pathBarrier;
loadscreen->SetLoadMessage("PathCosts: writing", true);
WriteFile(cacheFileName, map);
loadscreen->SetLoadMessage("PathCosts: written", true);
}
// Calculate PreCached PathData Checksum
pathChecksum = CalcChecksum();
// switch to runtime wanted IPathFinder (maybe PF or PE)
delete pathFinders[0];
pathFinders[0] = pathFinder;
pathCache[0] = new CPathCache(nbrOfBlocks.x, nbrOfBlocks.y);
pathCache[1] = new CPathCache(nbrOfBlocks.x, nbrOfBlocks.y);
}
void CPathEstimator::InitBlocks()
{
blockStates.peNodeOffsets.resize(moveDefHandler->GetNumMoveDefs());
for (unsigned int idx = 0; idx < moveDefHandler->GetNumMoveDefs(); idx++) {
blockStates.peNodeOffsets[idx].resize(nbrOfBlocks.x * nbrOfBlocks.y);
}
}
__FORCE_ALIGN_STACK__
void CPathEstimator::CalcOffsetsAndPathCosts(unsigned int threadNum)
{
// reset FPU state for synced computations
streflop::streflop_init<streflop::Simple>();
if (threadNum > 0) {
Threading::SetAffinity(~0);
Threading::SetThreadName(IntToString(threadNum, "pathhelper%i"));
}
// NOTE: EstimatePathCosts() [B] is temporally dependent on CalculateBlockOffsets() [A],
// A must be completely finished before B_i can be safely called. This means we cannot
// let thread i execute (A_i, B_i), but instead have to split the work such that every
// thread finishes its part of A before any starts B_i.
const unsigned int maxBlockIdx = blockStates.GetSize() - 1;
int i;
while ((i = --offsetBlockNum) >= 0)
CalculateBlockOffsets(maxBlockIdx - i, threadNum);
pathBarrier->wait();
while ((i = --costBlockNum) >= 0)
EstimatePathCosts(maxBlockIdx - i, threadNum);
}
void CPathEstimator::CalculateBlockOffsets(unsigned int blockIdx, unsigned int threadNum)
{
const int2 blockPos = BlockIdxToPos(blockIdx);
if (threadNum == 0 && blockIdx >= nextOffsetMessageIdx) {
nextOffsetMessageIdx = blockIdx + blockStates.GetSize() / 16;
clientNet->Send(CBaseNetProtocol::Get().SendCPUUsage(BLOCK_SIZE | (blockIdx << 8)));
}
for (unsigned int i = 0; i < moveDefHandler->GetNumMoveDefs(); i++) {
const MoveDef* md = moveDefHandler->GetMoveDefByPathType(i);
if (md->udRefCount > 0) {
blockStates.peNodeOffsets[md->pathType][blockIdx] = FindOffset(*md, blockPos.x, blockPos.y);
}
}
}
void CPathEstimator::EstimatePathCosts(unsigned int blockIdx, unsigned int threadNum)
{
const int2 blockPos = BlockIdxToPos(blockIdx);
if (threadNum == 0 && blockIdx >= nextCostMessageIdx) {
nextCostMessageIdx = blockIdx + blockStates.GetSize() / 16;
char calcMsg[128];
sprintf(calcMsg, "PathCosts: precached %d of %d blocks", blockIdx, blockStates.GetSize());
clientNet->Send(CBaseNetProtocol::Get().SendCPUUsage(0x1 | BLOCK_SIZE | (blockIdx << 8)));
loadscreen->SetLoadMessage(calcMsg, (blockIdx != 0));
}
for (unsigned int i = 0; i < moveDefHandler->GetNumMoveDefs(); i++) {
const MoveDef* md = moveDefHandler->GetMoveDefByPathType(i);
if (md->udRefCount > 0) {
CalculateVertices(*md, blockPos, threadNum);
}
}
}
/**
* Move around the blockPos a bit, so we `surround` unpassable blocks.
*/
int2 CPathEstimator::FindOffset(const MoveDef& moveDef, unsigned int blockX, unsigned int blockZ) const
{
// lower corner position of block
const unsigned int lowerX = blockX * BLOCK_SIZE;
const unsigned int lowerZ = blockZ * BLOCK_SIZE;
const unsigned int blockArea = (BLOCK_SIZE * BLOCK_SIZE) / SQUARE_SIZE;
int2 bestPos(lowerX + (BLOCK_SIZE >> 1), lowerZ + (BLOCK_SIZE >> 1));
float bestCost = std::numeric_limits<float>::max();
// search for an accessible position within this block
/*for (unsigned int z = 0; z < BLOCK_SIZE; ++z) {
for (unsigned int x = 0; x < BLOCK_SIZE; ++x) {
float speedMod = CMoveMath::GetPosSpeedMod(moveDef, lowerX + x, lowerZ + z);
bool curblock = (speedMod == 0.0f) || CMoveMath::IsBlockedStructure(moveDef, lowerX + x, lowerZ + z, NULL);
if (!curblock) {
const float dx = x - (float)(BLOCK_SIZE - 1) * 0.5f;
const float dz = z - (float)(BLOCK_SIZE - 1) * 0.5f;
const float cost = (dx * dx + dz * dz) + (blockArea / (0.001f + speedMod));
if (cost < bestCost) {
bestCost = cost;
bestPos.x = lowerX + x;
bestPos.y = lowerZ + z;
}
}
}
}*/
// Equal code
// just that we have sorted the squares by their baseCost, so
// can early exit, when it increases above our current best one.
// Performance: tests showed that only ~60% need to be tested
for (const SOffsetBlock& ob: offsetBlocksSortedByCost) {
if (ob.cost >= bestCost) {
break;
}
const int2 blockPos(lowerX + ob.offset.x, lowerZ + ob.offset.y);
const float speedMod = CMoveMath::GetPosSpeedMod(moveDef, blockPos.x, blockPos.y);
//assert((blockArea / (0.001f + speedMod) >= 0.0f);
const float cost = ob.cost + (blockArea / (0.001f + speedMod));
if (cost < bestCost) {
if (!CMoveMath::IsBlockedStructure(moveDef, blockPos.x, blockPos.y, NULL)) {
bestCost = cost;
bestPos = blockPos;
}
}
}
// return the offset found
return bestPos;
}
/**
* Calculate all vertices connected from the given block
*/
void CPathEstimator::CalculateVertices(const MoveDef& moveDef, int2 block, unsigned int thread)
{
// see code comment of GetBlockVertexOffset() for more info why those directions are choosen
CalculateVertex(moveDef, block, PATHDIR_LEFT, thread);
CalculateVertex(moveDef, block, PATHDIR_LEFT_UP, thread);
CalculateVertex(moveDef, block, PATHDIR_UP, thread);
CalculateVertex(moveDef, block, PATHDIR_RIGHT_UP, thread);
}
/**
* Calculate requested vertex
*/
void CPathEstimator::CalculateVertex(
const MoveDef& moveDef,
int2 parentBlock,
unsigned int direction,
unsigned int threadNum)
{
const int2 childBlock = parentBlock + PE_DIRECTION_VECTORS[direction];
const unsigned int parentBlockNbr = BlockPosToIdx(parentBlock);
const unsigned int childBlockNbr = BlockPosToIdx(childBlock);
const unsigned int vertexNbr =
moveDef.pathType * blockStates.GetSize() * PATH_DIRECTION_VERTICES +
parentBlockNbr * PATH_DIRECTION_VERTICES +
direction;
// outside map?
if ((unsigned)childBlock.x >= nbrOfBlocks.x || (unsigned)childBlock.y >= nbrOfBlocks.y) {
vertexCosts[vertexNbr] = PATHCOST_INFINITY;
return;
}
// start position within parent block
const int2 parentSquare = blockStates.peNodeOffsets[moveDef.pathType][parentBlockNbr];
// goal position within child block
const int2 childSquare = blockStates.peNodeOffsets[moveDef.pathType][childBlockNbr];
const float3 startPos = SquareToFloat3(parentSquare.x, parentSquare.y);
const float3 goalPos = SquareToFloat3(childSquare.x, childSquare.y);
// keep search exactly contained within the two blocks
CRectangularSearchConstraint pfDef(startPos, goalPos, 0.0f, BLOCK_SIZE);
// we never want to allow searches from any blocked starting positions
// (otherwise PE and PF can disagree), but are more lenient for normal
// searches so players can "unstuck" units
// note: PE itself should ensure this never happens to begin with?
//
// blocked goal positions are always early-outs (no searching needed)
const bool strtBlocked = ((CMoveMath::IsBlocked(moveDef, startPos, nullptr) & CMoveMath::BLOCK_STRUCTURE) != 0);
const bool goalBlocked = pfDef.IsGoalBlocked(moveDef, CMoveMath::BLOCK_STRUCTURE, nullptr);
if (strtBlocked || goalBlocked) {
vertexCosts[vertexNbr] = PATHCOST_INFINITY;
return;
}
// find path from parent to child block
//
// since CPathFinder::GetPath() is not thread-safe, use
// this thread's "private" CPathFinder instance (rather
// than locking pathFinder->GetPath()) if we are in one
pfDef.testMobile = false;
pfDef.needPath = false;
pfDef.exactPath = true;
pfDef.dirIndependent = true;
IPath::Path path;
IPath::SearchResult result = pathFinders[threadNum]->GetPath(moveDef, pfDef, nullptr, startPos, path, MAX_SEARCHED_NODES_PF >> 2);
// store the result
if (result == IPath::Ok) {
vertexCosts[vertexNbr] = path.pathCost;
} else {
vertexCosts[vertexNbr] = PATHCOST_INFINITY;
}
}
/**
* Mark affected blocks as obsolete
*/
void CPathEstimator::MapChanged(unsigned int x1, unsigned int z1, unsigned int x2, unsigned z2)
{
// find the upper and lower corner of the rectangular area
const auto mmx = std::minmax(x1, x2);
const auto mmz = std::minmax(z1, z2);
const int lowerX = Clamp(int(mmx.first / BLOCK_SIZE) - 1, 0, int(nbrOfBlocks.x - 1));
const int upperX = Clamp(int(mmx.second / BLOCK_SIZE) + 1, 0, int(nbrOfBlocks.x - 1));
const int lowerZ = Clamp(int(mmz.first / BLOCK_SIZE) - 1, 0, int(nbrOfBlocks.y - 1));
const int upperZ = Clamp(int(mmz.second / BLOCK_SIZE) + 1, 0, int(nbrOfBlocks.y - 1));
// mark the blocks inside the rectangle, enqueue them
// from upper to lower because of the placement of the
// bi-directional vertices
for (int z = upperZ; z >= lowerZ; z--) {
for (int x = upperX; x >= lowerX; x--) {
const int idx = BlockPosToIdx(int2(x,z));
if ((blockStates.nodeMask[idx] & PATHOPT_OBSOLETE) != 0)
continue;
updatedBlocks.emplace_back(x, z);
blockStates.nodeMask[idx] |= PATHOPT_OBSOLETE;
}
}
}
/**
* Update some obsolete blocks using the FIFO-principle
*/
void CPathEstimator::Update()
{
pathCache[0]->Update();
pathCache[1]->Update();
const auto numMoveDefs = moveDefHandler->GetNumMoveDefs();
if (numMoveDefs == 0) {
return;
}
// determine how many blocks we should update
int blocksToUpdate = 0;
int consumeBlocks = 0;
{
const int progressiveUpdates = updatedBlocks.size() * numMoveDefs * modInfo.pfUpdateRate;
const int MIN_BLOCKS_TO_UPDATE = std::max<int>(BLOCKS_TO_UPDATE >> 1, 4U);
const int MAX_BLOCKS_TO_UPDATE = std::max<int>(BLOCKS_TO_UPDATE << 1, MIN_BLOCKS_TO_UPDATE);
blocksToUpdate = Clamp(progressiveUpdates, MIN_BLOCKS_TO_UPDATE, MAX_BLOCKS_TO_UPDATE);
blockUpdatePenalty = std::max(0, blockUpdatePenalty - blocksToUpdate);
if (blockUpdatePenalty > 0)
blocksToUpdate = std::max(0, blocksToUpdate - blockUpdatePenalty);
// we have to update blocks for all movedefs (cause PATHOPT_OBSOLETE is per block and not movedef)
consumeBlocks = int(progressiveUpdates != 0) * int(ceil(float(blocksToUpdate) / numMoveDefs)) * numMoveDefs;
blockUpdatePenalty += consumeBlocks;
}
if (blocksToUpdate == 0)
return;
if (updatedBlocks.empty())
return;
struct SingleBlock {
int2 blockPos;
const MoveDef* moveDef;
SingleBlock(const int2& pos, const MoveDef* md) : blockPos(pos), moveDef(md) {}
};
std::vector<SingleBlock> consumedBlocks;
consumedBlocks.reserve(consumeBlocks);
// get blocks to update
while (!updatedBlocks.empty()) {
int2& pos = updatedBlocks.front();
const int idx = BlockPosToIdx(pos);
if ((blockStates.nodeMask[idx] & PATHOPT_OBSOLETE) == 0) {
updatedBlocks.pop_front();
continue;
}
if (consumedBlocks.size() >= blocksToUpdate) {
break;
}
// issue repathing for all active movedefs
for (unsigned int i = 0; i < numMoveDefs; i++) {
const MoveDef* md = moveDefHandler->GetMoveDefByPathType(i);
if (md->udRefCount > 0)
consumedBlocks.emplace_back(pos, md);
}
// inform dependent pathEstimator that we change vertex cost of those blocks
if (nextPathEstimator)
nextPathEstimator->MapChanged(pos.x * BLOCK_SIZE, pos.y * BLOCK_SIZE, pos.x * BLOCK_SIZE, pos.y * BLOCK_SIZE);
updatedBlocks.pop_front(); // must happen _after_ last usage of the `pos` reference!
blockStates.nodeMask[idx] &= ~PATHOPT_OBSOLETE;
}
// FindOffset (threadsafe)
{
SCOPED_TIMER("CPathEstimator::FindOffset");
for_mt(0, consumedBlocks.size(), [&](const int n) {
// copy the next block in line
const SingleBlock sb = consumedBlocks[n];
const int blockN = BlockPosToIdx(sb.blockPos);
const MoveDef* currBlockMD = sb.moveDef;
blockStates.peNodeOffsets[currBlockMD->pathType][blockN] = FindOffset(*currBlockMD, sb.blockPos.x, sb.blockPos.y);
});
}
// CalculateVertices (not threadsafe)
{
SCOPED_TIMER("CPathEstimator::CalculateVertices");
for (unsigned int n = 0; n < consumedBlocks.size(); ++n) {
// copy the next block in line
const SingleBlock sb = consumedBlocks[n];
CalculateVertices(*sb.moveDef, sb.blockPos);
}
}
}
const CPathCache::CacheItem* CPathEstimator::GetCache(const int2 strtBlock, const int2 goalBlock, float goalRadius, int pathType, const bool synced) const
{
return pathCache[synced]->GetCachedPath(strtBlock, goalBlock, goalRadius, pathType);
}
void CPathEstimator::AddCache(const IPath::Path* path, const IPath::SearchResult result, const int2 strtBlock, const int2 goalBlock, float goalRadius, int pathType, const bool synced)
{
pathCache[synced]->AddPath(path, result, strtBlock, goalBlock, goalRadius, pathType);
}
/**
* Performs the actual search.
*/
IPath::SearchResult CPathEstimator::DoSearch(const MoveDef& moveDef, const CPathFinderDef& peDef, const CSolidObject* owner)
{
bool foundGoal = false;
// get the goal square offset
const int2 goalSqrOffset = peDef.GoalSquareOffset(BLOCK_SIZE);
while (!openBlocks.empty() && (openBlockBuffer.GetSize() < maxBlocksToBeSearched)) {
// get the open block with lowest cost
PathNode* ob = const_cast<PathNode*>(openBlocks.top());
openBlocks.pop();
// check if the block has been marked as unaccessible during its time in the queue
if (blockStates.nodeMask[ob->nodeNum] & (PATHOPT_BLOCKED | PATHOPT_CLOSED))
continue;
// no, check if the goal is already reached
const int2 bSquare = blockStates.peNodeOffsets[moveDef.pathType][ob->nodeNum];
const int2 gSquare = ob->nodePos * BLOCK_SIZE + goalSqrOffset;
if (peDef.IsGoal(bSquare.x, bSquare.y) || peDef.IsGoal(gSquare.x, gSquare.y)) {
mGoalBlockIdx = ob->nodeNum;
mGoalHeuristic = 0.0f;
foundGoal = true;
break;
}
// no, test the 8 surrounding blocks
// NOTE: each of these calls increments openBlockBuffer.idx by 1, so
// maxBlocksToBeSearched is always less than <MAX_SEARCHED_NODES_PE - 8>
TestBlock(moveDef, peDef, ob, owner, PATHDIR_LEFT, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_LEFT_UP, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_UP, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_RIGHT_UP, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_RIGHT, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_RIGHT_DOWN, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_DOWN, PATHOPT_OPEN, 1.f);
TestBlock(moveDef, peDef, ob, owner, PATHDIR_LEFT_DOWN, PATHOPT_OPEN, 1.f);
// mark this block as closed
blockStates.nodeMask[ob->nodeNum] |= PATHOPT_CLOSED;
}
// we found our goal
if (foundGoal)
return IPath::Ok;
// we could not reach the goal
if (openBlockBuffer.GetSize() >= maxBlocksToBeSearched)
return IPath::GoalOutOfRange;
// search could not reach the goal due to the unit being locked in
if (openBlocks.empty())
return IPath::GoalOutOfRange;
// should never happen
LOG_L(L_ERROR, "%s - Unhandled end of search!", __FUNCTION__);
return IPath::Error;
}
/**
* Test the accessability of a block and its value,
* possibly also add it to the open-blocks pqueue.
*/
bool CPathEstimator::TestBlock(
const MoveDef& moveDef,
const CPathFinderDef& peDef,
const PathNode* parentOpenBlock,
const CSolidObject* owner,
const unsigned int pathDir,
const unsigned int /*blockStatus*/,
float /*speedMod*/
) {
testedBlocks++;
// initial calculations of the new block
const int2 testBlockPos = parentOpenBlock->nodePos + PE_DIRECTION_VECTORS[pathDir];
const int2 goalBlockPos = {int(peDef.goalSquareX / BLOCK_SIZE), int(peDef.goalSquareZ / BLOCK_SIZE)};
const unsigned int testBlockIdx = BlockPosToIdx(testBlockPos);
// bounds-check
if ((unsigned)testBlockPos.x >= nbrOfBlocks.x) return false;
if ((unsigned)testBlockPos.y >= nbrOfBlocks.y) return false;
// check if the block is unavailable
if (blockStates.nodeMask[testBlockIdx] & (PATHOPT_BLOCKED | PATHOPT_CLOSED))
return false;
// read precached vertex costs
const unsigned int pathTypeBaseIdx = moveDef.pathType * blockStates.GetSize() * PATH_DIRECTION_VERTICES;
const unsigned int blockNumBaseIdx = parentOpenBlock->nodeNum * PATH_DIRECTION_VERTICES;
const unsigned int vertexIdx = pathTypeBaseIdx + blockNumBaseIdx + GetBlockVertexOffset(pathDir, nbrOfBlocks.x);
assert(vertexIdx < vertexCosts.size());
if (vertexCosts[vertexIdx] >= PATHCOST_INFINITY) {
// warning: we cannot naively set PATHOPT_BLOCKED here;
// vertexCosts[] depends on the direction and nodeMask
// does not
// we would have to save the direction via PATHOPT_LEFT
// etc. in the nodeMask but that is complicated and not
// worth it: would just save the vertexCosts[] lookup
//
// blockStates.nodeMask[testBlockIdx] |= (PathDir2PathOpt(pathDir) | PATHOPT_BLOCKED);
// dirtyBlocks.push_back(testBlockIdx);
return false;
}
// check if the block is out of constraints
const int2 square = blockStates.peNodeOffsets[moveDef.pathType][testBlockIdx];
if (!peDef.WithinConstraints(square.x, square.y)) {
blockStates.nodeMask[testBlockIdx] |= PATHOPT_BLOCKED;
dirtyBlocks.push_back(testBlockIdx);
return false;
}
// constraintDisabled is a hackish way to make sure we don't check this in CalculateVertices
if (testBlockPos == goalBlockPos && peDef.needPath) {
IPath::Path path;
// if we have expanded the goal-block, check if a valid
// max-resolution path exists (from where we entered it
// to the actual goal position) since there might still
// be impassable terrain in between
//
// const float3 gWorldPos = { testBlockPos.x * BLOCK_PIXEL_SIZE * 1.0f, 0.0f, testBlockPos.y * BLOCK_PIXEL_SIZE * 1.0f};
// const float3 sWorldPos = {parentOpenBlock->nodePos.x * BLOCK_PIXEL_SIZE * 1.0f, 0.0f, parentOpenBlock->nodePos.y * BLOCK_PIXEL_SIZE * 1.0f};
const int idx = BlockPosToIdx(testBlockPos);
const int2 testSquare = blockStates.peNodeOffsets[moveDef.pathType][idx];
const float3 sWorldPos = SquareToFloat3(testSquare.x, testSquare.y);
const float3 gWorldPos = peDef.goal;
if (sWorldPos.SqDistance2D(gWorldPos) > peDef.sqGoalRadius) {
CRectangularSearchConstraint pfDef = CRectangularSearchConstraint(sWorldPos, gWorldPos, peDef.sqGoalRadius, BLOCK_SIZE); // sets goalSquare{X,Z}
pfDef.testMobile = false;
pfDef.needPath = false;
pfDef.exactPath = true;
pfDef.dirIndependent = true;
const IPath::SearchResult searchRes = pathFinder->GetPath(moveDef, pfDef, owner, sWorldPos, path, MAX_SEARCHED_NODES_PF >> 3);
if (searchRes != IPath::Ok) {
// we cannot set PATHOPT_BLOCKED here either, result
// depends on direction of entry from the parent node
//
// blockStates.nodeMask[testBlockIdx] |= PATHOPT_BLOCKED;
// dirtyBlocks.push_back(testBlockIdx);
return false;
}
}
}
// evaluate this node (NOTE the max-resolution indexing for {flow,extra}Cost)
//const float flowCost = (peDef.testMobile) ? (PathFlowMap::GetInstance())->GetFlowCost(square.x, square.y, moveDef, PathDir2PathOpt(pathDir)) : 0.0f;
const float extraCost = blockStates.GetNodeExtraCost(square.x, square.y, peDef.synced);
const float nodeCost = vertexCosts[vertexIdx] + extraCost;
const float gCost = parentOpenBlock->gCost + nodeCost;
const float hCost = peDef.Heuristic(square.x, square.y);
const float fCost = gCost + hCost;
// already in the open set?
if (blockStates.nodeMask[testBlockIdx] & PATHOPT_OPEN) {
// check if new found path is better or worse than the old one
if (blockStates.fCost[testBlockIdx] <= fCost)
return true;
// no, clear old path data
blockStates.nodeMask[testBlockIdx] &= ~PATHOPT_CARDINALS;
}
// look for improvements
if (hCost < mGoalHeuristic) {
mGoalBlockIdx = testBlockIdx;
mGoalHeuristic = hCost;
}
// store this block as open
openBlockBuffer.SetSize(openBlockBuffer.GetSize() + 1);
assert(openBlockBuffer.GetSize() < MAX_SEARCHED_NODES_PE);
PathNode* ob = openBlockBuffer.GetNode(openBlockBuffer.GetSize());
ob->fCost = fCost;
ob->gCost = gCost;
ob->nodePos = testBlockPos;
ob->nodeNum = testBlockIdx;
openBlocks.push(ob);
blockStates.SetMaxCost(NODE_COST_F, std::max(blockStates.GetMaxCost(NODE_COST_F), fCost));
blockStates.SetMaxCost(NODE_COST_G, std::max(blockStates.GetMaxCost(NODE_COST_G), gCost));
// mark this block as open
blockStates.fCost[testBlockIdx] = fCost;
blockStates.gCost[testBlockIdx] = gCost;
blockStates.nodeMask[testBlockIdx] |= (PathDir2PathOpt(pathDir) | PATHOPT_OPEN);
dirtyBlocks.push_back(testBlockIdx);
return true;
}
/**
* Recreate the path taken to the goal
*/
IPath::SearchResult CPathEstimator::FinishSearch(const MoveDef& moveDef, const CPathFinderDef& pfDef, IPath::Path& foundPath) const
{
// set some additional information
foundPath.pathCost = blockStates.fCost[mGoalBlockIdx] - mGoalHeuristic;
if (pfDef.needPath) {
unsigned int blockIdx = mGoalBlockIdx;
while (true) {
// use offset defined by the block
const int2 square = blockStates.peNodeOffsets[moveDef.pathType][blockIdx];
float3 pos(square.x * SQUARE_SIZE, 0.0f, square.y * SQUARE_SIZE);
pos.y = CMoveMath::yLevel(moveDef, square.x, square.y);
foundPath.path.push_back(pos);
if (blockIdx == mStartBlockIdx)
break;
// next step backwards
auto pathDir = PathOpt2PathDir(blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS);
int2 blockPos = BlockIdxToPos(blockIdx) - PE_DIRECTION_VECTORS[pathDir];
blockIdx = BlockPosToIdx(blockPos);
}
if (!foundPath.path.empty()) {
foundPath.pathGoal = foundPath.path.front();
}
}
return IPath::Ok;
}
/**
* Try to read offset and vertices data from file, return false on failure
*/
bool CPathEstimator::ReadFile(const std::string& cacheFileName, const std::string& map)
{
const unsigned int hash = Hash();
char hashString[64] = {0};
sprintf(hashString, "%u", hash);
LOG("[PathEstimator::%s] hash=%s", __FUNCTION__, hashString);
std::string filename = GetPathCacheDir() + map + hashString + "." + cacheFileName + ".zip";
if (!FileSystem::FileExists(filename))
return false;
// open file for reading from a suitable location (where the file exists)
IArchive* pfile = archiveLoader.OpenArchive(dataDirsAccess.LocateFile(filename), "sdz");
if (!pfile || !pfile->IsOpen()) {
delete pfile;
return false;
}
char calcMsg[512];
sprintf(calcMsg, "Reading Estimate PathCosts [%d]", BLOCK_SIZE);
loadscreen->SetLoadMessage(calcMsg);
std::unique_ptr<IArchive> auto_pfile(pfile);
IArchive& file(*pfile);
const unsigned fid = file.FindFile("pathinfo");
if (fid >= file.NumFiles())
return false;
pathChecksum = file.GetCrc32(fid);
std::vector<boost::uint8_t> buffer;
if (!file.GetFile(fid, buffer))
return false;
if (buffer.size() < 4)
return false;
unsigned pos = 0;
unsigned filehash = *((unsigned*)&buffer[pos]);
pos += sizeof(unsigned);
if (filehash != hash)
return false;
// Read block-center-offset data.
const unsigned blockSize = blockStates.GetSize() * sizeof(short2);
if (buffer.size() < pos + blockSize * moveDefHandler->GetNumMoveDefs())
return false;
for (int pathType = 0; pathType < moveDefHandler->GetNumMoveDefs(); ++pathType) {
std::memcpy(&blockStates.peNodeOffsets[pathType][0], &buffer[pos], blockSize);
pos += blockSize;
}
// Read vertices data.
if (buffer.size() < pos + vertexCosts.size() * sizeof(float))
return false;
std::memcpy(&vertexCosts[0], &buffer[pos], vertexCosts.size() * sizeof(float));
// File read successful.
return true;
}
/**
* Try to write offset and vertex data to file.
*/
void CPathEstimator::WriteFile(const std::string& cacheFileName, const std::string& map)
{
// We need this directory to exist
if (!FileSystem::CreateDirectory(GetPathCacheDir()))
return;
const unsigned int hash = Hash();
char hashString[64] = {0};
sprintf(hashString, "%u", hash);
LOG("[PathEstimator::%s] hash=%s", __FUNCTION__, hashString);
const std::string filename = GetPathCacheDir() + map + hashString + "." + cacheFileName + ".zip";
// open file for writing in a suitable location
zipFile file = zipOpen(dataDirsAccess.LocateFile(filename, FileQueryFlags::WRITE).c_str(), APPEND_STATUS_CREATE);
if (file == NULL)
return;
zipOpenNewFileInZip(file, "pathinfo", NULL, NULL, 0, NULL, 0, NULL, Z_DEFLATED, Z_BEST_COMPRESSION);
// Write hash. (NOTE: this also affects the CRC!)
zipWriteInFileInZip(file, (void*) &hash, 4);
// Write block-center-offsets.
for (int pathType = 0; pathType < moveDefHandler->GetNumMoveDefs(); ++pathType) {
zipWriteInFileInZip(file, (void*) &blockStates.peNodeOffsets[pathType][0], blockStates.peNodeOffsets[pathType].size() * sizeof(short2));
}
// Write vertices.
zipWriteInFileInZip(file, &vertexCosts[0], vertexCosts.size() * sizeof(float));
zipCloseFileInZip(file);
zipClose(file, NULL);
// get the CRC over the written path data
IArchive* pfile = archiveLoader.OpenArchive(dataDirsAccess.LocateFile(filename), "sdz");
if (pfile == NULL)
return;
if (pfile->IsOpen()) {
assert(pfile->FindFile("pathinfo") < pfile->NumFiles());
pathChecksum = pfile->GetCrc32(pfile->FindFile("pathinfo"));
}
delete pfile;
}
boost::uint32_t CPathEstimator::CalcChecksum() const
{
boost::uint32_t pathChecksum = 0;
for (auto& pathTypeOffsets: blockStates.peNodeOffsets) {
pathChecksum = HsiehHash(&pathTypeOffsets[0], pathTypeOffsets.size() * sizeof(short2), pathChecksum);
}
pathChecksum = HsiehHash(&vertexCosts[0], vertexCosts.size() * sizeof(float), pathChecksum);
return pathChecksum;
}
/**
* Returns a hash-code identifying the dataset of this estimator.
*/
unsigned int CPathEstimator::Hash() const
{
unsigned int mapChecksum = readMap->CalcHeightmapChecksum();
LOG("[PathEstimator::%s] mapChecksum=%u", __FUNCTION__, mapChecksum);
unsigned int typeMapChecksum = readMap->CalcTypemapChecksum();
LOG("[PathEstimator::%s] typeMapChecksum=%u", __FUNCTION__, typeMapChecksum);
unsigned int moveDefChecksum = moveDefHandler->GetCheckSum();
LOG("[PathEstimator::%s] moveDefChecksum=%u", __FUNCTION__, moveDefChecksum);
unsigned int blockingChecksum = groundBlockingObjectMap->CalcChecksum();
LOG("[PathEstimator::%s] blockingChecksum=%u", __FUNCTION__, blockingChecksum);
LOG("[PathEstimator::%s] BLOCK_SIZE=%u", __FUNCTION__, BLOCK_SIZE);
LOG("[PathEstimator::%s] PATHESTIMATOR_VERSION=%u", __FUNCTION__, PATHESTIMATOR_VERSION);
return mapChecksum +
typeMapChecksum +
moveDefChecksum +
blockingChecksum +
BLOCK_SIZE + PATHESTIMATOR_VERSION;
}
|