1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#ifdef USE_VALGRIND
#include <valgrind/valgrind.h>
#endif
#include "FPUCheck.h"
#include "lib/streflop/streflop_cond.h"
#include "System/Exceptions.h"
#include "System/ThreadPool.h"
#include "System/Log/ILog.h"
#include "System/Platform/CpuID.h"
#ifdef STREFLOP_H
#ifdef STREFLOP_SSE
#elif STREFLOP_X87
#else
#error "streflop FP-math mode must be either SSE or X87"
#endif
#endif
/**
@brief checks FPU control registers.
Checks the FPU control registers MXCSR and FPUCW,
For reference, the layout of the MXCSR register:
FZ:RC:RC:PM:UM:OM:ZM:DM:IM: Rsvd:PE:UE:OE:ZE:DE:IE
15 14 13 12 11 10 9 8 7| 6 5 4 3 2 1 0
Spring1: 0 0 0 1 1 1 0 1 0| 0 0 0 0 0 0 0 = 0x1D00 = 7424
Spring2: 0 0 0 1 1 1 1 1 1| 0 0 0 0 0 0 0 = 0x1F80 = 8064
Spring3: 0 0 0 1 1 0 0 1 0| 0 0 0 0 0 0 0 = 0x1900 = 6400 (signan)
Default: 0 0 0 1 1 1 1 1 1| 0 0 0 0 0 0 0 = 0x1F80 = 8064
MaskRsvd: 1 1 1 1 1 1 1 1 1| 0 0 0 0 0 0 0 = 0xFF80
And the layout of the 387 FPU control word register:
Rsvd:Rsvd:Rsvd:X:RC:RC:PC:PC: Rsvd:Rsvd:PM:UM:OM:ZM:DM:IM
15 14 13 12 11 10 9 8| 7 6 5 4 3 2 1 0
Spring1: 0 0 0 0 0 0 0 0| 0 0 1 1 1 0 1 0 = 0x003A = 58
Spring2: 0 0 0 0 0 0 0 0| 0 0 1 1 1 1 1 1 = 0x003F = 63
Spring3: 0 0 0 0 0 0 0 0| 0 0 1 1 0 0 1 0 = 0x0032 = 50 (signan)
Default: 0 0 0 0 0 0 1 1| 0 0 1 1 1 1 1 1 = 0x033F = 831
MaskRsvd: 0 0 0 1 1 1 1 1| 0 0 1 1 1 1 1 1 = 0x1F3F
Where:
Rsvd - Reserved
FZ - Flush to Zero
RC - Rounding Control
PM - Precision Mask
UM - Underflow Mask
OM - Overflow Mask
ZM - Zerodivide Mask
DM - Denormal Mask
IM - Invalid Mask
PE - Precision Exception
UE - Underflow Exception
OE - Overflow Exception
ZE - Zerodivide Exception
DE - Denormal Exception
IE - Invalid Exception
X - Infinity control (unused on 387 and higher)
PC - Precision Control
Spring1 - Control word used by spring in code in CGame::SimFrame().
Spring2 - Control word used by spring in code everywhere else.
Default - Default control word according to Intel.
MaskRsvd - Masks out the reserved bits.
Source: Intel Architecture Software Development Manual, Volume 1, Basic Architecture
*/
void good_fpu_control_registers(const char* text)
{
#ifdef USE_VALGRIND
static const bool valgrindRunning = RUNNING_ON_VALGRIND;
if (valgrindRunning) {
// Valgrind doesn't allow us setting the FPU, so syncing is impossible
return;
}
#endif
// accepted/syncsafe FPU states:
int sse_a, sse_b, sse_c, x87_a, x87_b, x87_c;
{
sse_a = 0x1D00;
sse_b = 0x1F80;
sse_c = 0x1900; // signan
x87_a = 0x003A;
x87_b = 0x003F;
x87_c = 0x0032; // signan
}
#if defined(STREFLOP_SSE)
// struct
streflop::fpenv_t fenv;
streflop::fegetenv(&fenv);
const int fsse = fenv.sse_mode & 0xFF80;
const int fx87 = fenv.x87_mode & 0x1F3F;
bool ret = ((fsse == sse_a) || (fsse == sse_b) || (fsse == sse_c)) &&
((fx87 == x87_a) || (fx87 == x87_b) || (fx87 == x87_c));
if (!ret) {
LOG_L(L_WARNING, "[%s] Sync warning: (env.sse_mode) MXCSR 0x%04X instead of 0x%04X or 0x%04X (\"%s\")", __FUNCTION__, fsse, sse_a, sse_b, text);
LOG_L(L_WARNING, "[%s] Sync warning: (env.x87_mode) FPUCW 0x%04X instead of 0x%04X or 0x%04X (\"%s\")", __FUNCTION__, fx87, x87_a, x87_b, text);
// Set single precision floating point math.
streflop::streflop_init<streflop::Simple>();
#if defined(__SUPPORT_SNAN__)
streflop::feraiseexcept(streflop::FPU_Exceptions(streflop::FE_INVALID | streflop::FE_DIVBYZERO | streflop::FE_OVERFLOW));
#endif
}
#elif defined(STREFLOP_X87)
// short int
streflop::fpenv_t fenv;
streflop::fegetenv(&fenv);
bool ret = (fenv & 0x1F3F) == x87_a || (fenv & 0x1F3F) == x87_b || (fenv & 0x1F3F) == x87_c;
if (!ret) {
LOG_L(L_WARNING, "[%s] Sync warning: FPUCW 0x%04X instead of 0x%04X or 0x%04X (\"%s\")", __FUNCTION__, fenv, x87_a, x87_b, text);
// Set single precision floating point math.
streflop::streflop_init<streflop::Simple>();
#if defined(__SUPPORT_SNAN__)
streflop::feraiseexcept(streflop::FPU_Exceptions(streflop::FE_INVALID | streflop::FE_DIVBYZERO | streflop::FE_OVERFLOW));
#endif
}
#endif
}
void good_fpu_init()
{
const unsigned int sseBits = springproc::GetProcSSEBits();
LOG("[CMyMath::Init] CPU SSE mask: %u, flags:", sseBits);
LOG("\tSSE 1.0: %d, SSE 2.0: %d", (sseBits >> 5) & 1, (sseBits >> 4) & 1);
LOG("\tSSE 3.0: %d, SSSE 3.0: %d", (sseBits >> 3) & 1, (sseBits >> 2) & 1);
LOG("\tSSE 4.1: %d, SSE 4.2: %d", (sseBits >> 1) & 1, (sseBits >> 0) & 1);
LOG("\tSSE 4.0A: %d, SSE 5.0A: %d", (sseBits >> 8) & 1, (sseBits >> 7) & 1);
#ifdef STREFLOP_H
const bool hasSSE1 = (sseBits >> 5) & 1;
#ifdef STREFLOP_SSE
if (hasSSE1) {
LOG("\tusing streflop SSE FP-math mode, CPU supports SSE instructions");
} else {
throw unsupported_error("CPU is missing SSE instruction support");
}
#else
if (hasSSE1) {
LOG_L(L_WARNING, "\tStreflop floating-point math is set to X87 mode");
LOG_L(L_WARNING, "\tThis may cause desyncs during multi-player games");
LOG_L(L_WARNING, "\tThis CPU is SSE-capable; consider recompiling");
} else {
LOG_L(L_WARNING, "\tStreflop floating-point math is not SSE-enabled");
LOG_L(L_WARNING, "\tThis may cause desyncs during multi-player games");
LOG_L(L_WARNING, "\tThis CPU is not SSE-capable; it can only use X87 mode");
}
#endif
// Set single precision floating point math.
streflop::streflop_init<streflop::Simple>();
#if defined(__SUPPORT_SNAN__)
streflop::feraiseexcept(streflop::FPU_Exceptions(streflop::FE_INVALID | streflop::FE_DIVBYZERO | streflop::FE_OVERFLOW));
#endif
#else
// probably should check if SSE was enabled during
// compilation and issue a warning about illegal
// instructions if so (or just die with an error)
LOG_L(L_WARNING, "Floating-point math is not controlled by streflop");
LOG_L(L_WARNING, "This makes keeping multi-player sync 99% impossible");
#endif
}
namespace springproc {
unsigned int GetProcMaxStandardLevel()
{
unsigned int rEAX = 0x00000000;
unsigned int rEBX = 0;
unsigned int rECX = 0;
unsigned int rEDX = 0;
ExecCPUID(&rEAX, &rEBX, &rECX, &rEDX);
return rEAX;
}
unsigned int GetProcMaxExtendedLevel()
{
unsigned int rEAX = 0x80000000;
unsigned int rEBX = 0;
unsigned int rECX = 0;
unsigned int rEDX = 0;
ExecCPUID(&rEAX, &rEBX, &rECX, &rEDX);
return rEAX;
}
unsigned int GetProcSSEBits()
{
unsigned int rEAX = 0;
unsigned int rEBX = 0;
unsigned int rECX = 0;
unsigned int rEDX = 0;
unsigned int bits = 0;
if (GetProcMaxStandardLevel() >= 0x00000001U) {
rEAX = 0x00000001U; ExecCPUID(&rEAX, &rEBX, &rECX, &rEDX);
int SSE42 = (rECX >> 20) & 1; bits |= ( SSE42 << 0); // SSE 4.2
int SSE41 = (rECX >> 19) & 1; bits |= ( SSE41 << 1); // SSE 4.1
int SSSE30 = (rECX >> 9) & 1; bits |= (SSSE30 << 2); // Supplemental SSE 3.0
int SSE30 = (rECX >> 0) & 1; bits |= ( SSE30 << 3); // SSE 3.0
int SSE20 = (rEDX >> 26) & 1; bits |= ( SSE20 << 4); // SSE 2.0
int SSE10 = (rEDX >> 25) & 1; bits |= ( SSE10 << 5); // SSE 1.0
int MMX = (rEDX >> 23) & 1; bits |= ( MMX << 6); // MMX
}
if (GetProcMaxExtendedLevel() >= 0x80000001U) {
rEAX = 0x80000001U; ExecCPUID(&rEAX, &rEBX, &rECX, &rEDX);
int SSE50A = (rECX >> 11) & 1; bits |= (SSE50A << 7); // SSE 5.0A
int SSE40A = (rECX >> 6) & 1; bits |= (SSE40A << 8); // SSE 4.0A
int MSSE = (rECX >> 7) & 1; bits |= (MSSE << 9); // Misaligned SSE
}
return bits;
}
}
|