1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
/**
* @brief Bit twiddling operations
*
* Bit twiddling shortcuts for various
* operations; see http://graphics.stanford.edu/%7Eseander/bithacks.html
* for details.
*/
#ifndef _BITOPS_H
#define _BITOPS_H
/**
* @brief Next power of 2
* @param x The number to be rounded
* @return the rounded number
*
* Rounds an unsigned integer up to the
* next power of 2; i.e. 2, 4, 8, 16, etc.
*/
static inline unsigned int next_power_of_2(unsigned int x)
{
#ifdef __GNUC__
return 1 << (sizeof(unsigned int) * 8 - __builtin_clz(--x));
#else
x--;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return ++x;
#endif
}
/**
* @brief Count bits set
* @param w Number in which to count bits
* @return The number of bits set
*
* Counts the number of bits in an unsigned int
* that are set to 1. So, for example, in the
* number 5, which is 101 in binary, there are
* two bits set to 1.
*/
static inline unsigned int count_bits_set(unsigned int w)
{
#ifdef __GNUC__
return __builtin_popcount(w);
#else
const int S[] = {1, 2, 4, 8, 16};
const int B[] = {0x55555555, 0x33333333, 0x0F0F0F0F, 0x00FF00FF, 0x0000FFFF};
int c = w;
c = ((c >> S[0]) & B[0]) + (c & B[0]);
c = ((c >> S[1]) & B[1]) + (c & B[1]);
c = ((c >> S[2]) & B[2]) + (c & B[2]);
c = ((c >> S[3]) & B[3]) + (c & B[3]);
c = ((c >> S[4]) & B[4]) + (c & B[4]);
return c;
#endif
}
/**
* quote from GCC doc "Returns one plus the index of the least significant 1-bit of x, or if x is zero, returns zero."
*/
static inline unsigned bits_ffs(unsigned int x)
{
#ifdef __GNUC__
return __builtin_ffs(x);
#else
if (x == 0) return 0;
unsigned i = 1;
while (!(x & 0x1)) {
x = x >> 1;
++i;
}
return i;
#endif
}
/**
* @brief Make even number macro
* @param n Number to make even
*
* Quick macro to make a number even, by
* forcing the rightmost bit to 0.
*/
#define make_even_number(n) ((n) += ((n) & 0x1)?1:0) //! ~ceil()
//#define make_even_number(n) ((x) &= ~0x1) //! ~floor()
/**
* @brief Conditionally set flag macro
* @param number to set or unset flag in
* @param mask bitmask to be set or unset
* @param condition whether to set or unset the flag
*
* According to a condition, this macro will set or unset a
* particular flag in a number. It's a quick way of doing
* this:
* if (condition) number |= mask; else number &= ~mask;
*/
#define conditionally_set_flag(number, mask, condition) ((number) ^= (-(condition) ^ (number)) & (mask))
#endif /* _BITOPS_H */
|