File: Random.cpp

package info (click to toggle)
spring 103.0%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 43,720 kB
  • ctags: 63,685
  • sloc: cpp: 368,283; ansic: 33,988; python: 12,417; java: 12,203; awk: 5,879; sh: 1,846; xml: 655; perl: 405; php: 211; objc: 194; makefile: 77; sed: 2
file content (983 lines) | stat: -rw-r--r-- 36,133 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/*
    streflop: STandalone REproducible FLOating-Point
    Nicolas Brodu, 2006
    Code released according to the GNU Lesser General Public License

    Heavily relies on GNU Libm, itself depending on netlib fplibm, GNU MP, and IBM MP lib.
    Uses SoftFloat too.

    Please read the history and copyright information in the documentation provided with the source code
*/

// Include time(0) function to get a seed based on system time
#include <time.h>
#include <iostream>
#include "streflop.h"

// Include endian-specific code
#undef __BYTE_ORDER
#undef __FLOAT_WORD_ORDER
#include "System.h"

namespace streflop {

//////////////////////////////////////////////////////////////////////
// Code stolen and adapted from mt19937ar.c
//////////////////////////////////////////////////////////////////////

/*
   A C-program for MT19937, with initialization improved 2002/1/26.
   Coded by Takuji Nishimura and Makoto Matsumoto.

   Before using, initialize the state by using init_genrand(seed)  
   or init_by_array(init_key, key_length).

   Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.                          
   Copyright (C) 2005, Mutsuo Saito,
   All rights reserved.                          

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote 
        products derived from this software without specific prior written 
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


   Any feedback is very welcome.
   http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/

#if STREFLOP_RANDOM_GEN_SIZE == 32

/* Period parameters */
#define N 624
#define M 397
#define MATRIX_A 0x9908b0dfUL   /* constant vector a */
#define UPPER_MASK 0x80000000UL /* most significant w-r bits */
#define LOWER_MASK 0x7fffffffUL /* least significant r bits */

/* initializes mt[N] with a seed */
inline void init_genrand(SizedUnsignedInteger<32>::Type s, RandomState& state)
{
    state.seed = s;
    state.mt[0]= s; // & 0xffffffffUL; // NB060508: unnecessary with the use of sized types
    for (state.mti=1; state.mti<N; state.mti++) {
        state.mt[state.mti] = 
        (1812433253UL * (state.mt[state.mti-1] ^ (state.mt[state.mti-1] >> 30)) + state.mti);
        /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
        /* In the previous versions, MSBs of the seed affect   */
        /* only MSBs of the array mt[].                        */
        /* 2002/01/09 modified by Makoto Matsumoto             */
        //mt[mti] &= 0xffffffffUL;  // NB060508: unnecessary with the use of sized types
        /* for >32 bit machines */
    }
}

/* generates a random number on [0,0xffffffff]-interval */
inline SizedUnsignedInteger<32>::Type genrand_int(RandomState& state)
{
    SizedUnsignedInteger<32>::Type y;
    static SizedUnsignedInteger<32>::Type mag01[2]={0x0UL, MATRIX_A};
    /* mag01[x] = x * MATRIX_A  for x=0,1 */

    if (state.mti >= N) { /* generate N words at one time */
        int kk;

        //if (state.mti == N+1)   /* if init_genrand() has not been called, */
            //init_genrand(5489UL, state); /* a default initial seed is used */

        for (kk=0;kk<N-M;kk++) {
            y = (state.mt[kk]&UPPER_MASK)|(state.mt[kk+1]&LOWER_MASK);
            state.mt[kk] = state.mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
        }
        for (;kk<N-1;kk++) {
            y = (state.mt[kk]&UPPER_MASK)|(state.mt[kk+1]&LOWER_MASK);
            state.mt[kk] = state.mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
        }
        y = (state.mt[N-1]&UPPER_MASK)|(state.mt[0]&LOWER_MASK);
        state.mt[N-1] = state.mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];

        state.mti = 0;
    }
  
    y = state.mt[state.mti++];

    /* Tempering */
    y ^= (y >> 11);
    y ^= (y << 7) & 0x9d2c5680UL;
    y ^= (y << 15) & 0xefc60000UL;
    y ^= (y >> 18);

    return y;
}

#else

//////////////////////////////////////////////////////////////////////
// End of code adapted from mt19937ar.c
// Now adapt code from the 64-bit version in mt19937-64.c
//////////////////////////////////////////////////////////////////////

/* 
   A C-program for MT19937-64 (2004/9/29 version).
   Coded by Takuji Nishimura and Makoto Matsumoto.

   This is a 64-bit version of Mersenne Twister pseudorandom number
   generator.

   Before using, initialize the state by using init_genrand64(seed)  
   or init_by_array64(init_key, key_length).

   Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura,
   All rights reserved.                          

   Redistribution and use in source and binary forms, with or without
   modification, are permitted provided that the following conditions
   are met:

     1. Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

     2. Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in the
        documentation and/or other materials provided with the distribution.

     3. The names of its contributors may not be used to endorse or promote 
        products derived from this software without specific prior written 
        permission.

   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
   CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
   EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
   PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
   PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
   LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
   NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
   SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

   References:
   T. Nishimura, ``Tables of 64-bit Mersenne Twisters''
     ACM Transactions on Modeling and 
     Computer Simulation 10. (2000) 348--357.
   M. Matsumoto and T. Nishimura,
     ``Mersenne Twister: a 623-dimensionally equidistributed
       uniform pseudorandom number generator''
     ACM Transactions on Modeling and 
     Computer Simulation 8. (Jan. 1998) 3--30.

   Any feedback is very welcome.
   http://www.math.hiroshima-u.ac.jp/~m-mat/MT/emt.html
   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove spaces)
*/

#define NN 312
#define MM 156
#define MATRIX_A 0xB5026F5AA96619E9ULL
#define UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */
#define LM 0x7FFFFFFFULL /* Least significant 31 bits */

/* initializes mt[NN] with a seed */
inline void init_genrand(SizedUnsignedInteger<64>::Type seed, RandomState& state)
{
    state.seed = seed;
    state.mt[0] = seed;
    for (state.mti=1; state.mti<NN; state.mti++)
        state.mt[state.mti] =  (SizedUnsignedInteger<64>::Type(6364136223846793005ULL) * (state.mt[state.mti-1] ^ (state.mt[state.mti-1] >> 62)) + state.mti);
}

/* generates a random number on [0, 2^64-1]-interval */
inline SizedUnsignedInteger<64>::Type genrand_int(RandomState& state)
{
    int i;
    SizedUnsignedInteger<64>::Type x;
    static SizedUnsignedInteger<64>::Type mag01[2]={0ULL, MATRIX_A};

    if (state.mti >= NN) { /* generate NN words at one time */

        /* if init_genrand64() has not been called, */
        /* a default initial seed is used     */
        //if (state.mti == NN+1)
            //init_genrand64(5489ULL, state);

        for (i=0;i<NN-MM;i++) {
            x = (state.mt[i]&UM)|(state.mt[i+1]&LM);
            state.mt[i] = state.mt[i+MM] ^ (x>>1) ^ mag01[(int)(x&1ULL)];
        }
        for (;i<NN-1;i++) {
            x = (state.mt[i]&UM)|(state.mt[i+1]&LM);
            state.mt[i] = state.mt[i+(MM-NN)] ^ (x>>1) ^ mag01[(int)(x&1ULL)];
        }
        x = (state.mt[NN-1]&UM)|(state.mt[0]&LM);
        state.mt[NN-1] = state.mt[MM-1] ^ (x>>1) ^ mag01[(int)(x&1ULL)];

        state.mti = 0;
    }
  
    x = state.mt[state.mti++];

    x ^= (x >> 29) & 0x5555555555555555ULL;
    x ^= (x << 17) & 0x71D67FFFEDA60000ULL;
    x ^= (x << 37) & 0xFFF7EEE000000000ULL;
    x ^= (x >> 43);

    return x;
}
#endif

//////////////////////////////////////////////////////////////////////
// End of code adapted from mt19937-64.c
//////////////////////////////////////////////////////////////////////

// Bit getter utilities
template<int nbits> struct Accessor {
    typedef typename SizedUnsignedInteger<nbits>::Type Type;
    static inline Type getRandomInt(RandomState& state) {
        return static_cast<Type>(genrand_int(state));
    }
};

// Specialize for 32 bits generator case
#if STREFLOP_RANDOM_GEN_SIZE == 32
template<> struct Accessor<64> {
    typedef SizedUnsignedInteger<64>::Type Type;
    static inline Type getRandomInt(RandomState& state) {
        return static_cast<Type>(genrand_int(state)) | (static_cast<Type>(genrand_int(state)) << 32);
    }
};
#endif


// This code inspired from a trick found in Richard J. Wagner's Mersene class and the optimization
// by Magnus Jonsson, also found at http://aggregate.org.
// The trick consists in:
// - draw random numbers in as close as possible as the target
// - reject these which are out of range
// The goal is to avoid operator %

template<int bits_size> struct RandomIntRestrictor {
};

// for 8-bits
template<> struct RandomIntRestrictor<8> {
    typedef SizedUnsignedInteger<8>::Type Type;

    static inline Type getRestrictedRandomInt(Type n, RandomState& state)
    {
        // First propagate leading 1 to all other bits
        Type mask = n;
        mask |= mask >> 1;
        mask |= mask >> 2;
        mask |= mask >> 4;

        // Draw only that number of bits, until a number is in the desired range [0,n]
        // Worse case is number of loops proba decreasing in 1/2^nloops
        Type ret;
        do {
            ret = Accessor<8>::getRandomInt(state) & mask;
        } while( ret > n );

        return ret;
    }
};

// for 16-bits
template<> struct RandomIntRestrictor<16> {
    typedef SizedUnsignedInteger<16>::Type Type;

    static inline Type getRestrictedRandomInt(Type n, RandomState& state)
    {
        // First propagate leading 1 to all other bits
        Type mask = n;
        mask |= mask >> 1;
        mask |= mask >> 2;
        mask |= mask >> 4;
        mask |= mask >> 8;

        // Draw only that number of bits, until a number is in the desired range [0,n]
        // Worse case is number of loops proba decreasing in 1/2^nloops
        Type ret;
        do {
            ret = Accessor<16>::getRandomInt(state) & mask;
        } while( ret > n );

        return ret;
    }
};

// for 32-bits
template<> struct RandomIntRestrictor<32> {
    typedef SizedUnsignedInteger<32>::Type Type;

    static inline Type getRestrictedRandomInt(Type n, RandomState& state)
    {
        // First propagate leading 1 to all other bits
        Type mask = n;
        mask |= mask >> 1;
        mask |= mask >> 2;
        mask |= mask >> 4;
        mask |= mask >> 8;
        mask |= mask >> 16;

        // Draw only that number of bits, until a number is in the desired range [0,n]
        // Worse case is number of loops proba decreasing in 1/2^nloops
        Type ret;
        do {
            ret = Accessor<32>::getRandomInt(state) & mask;
        } while( ret > n );

        return ret;
    }
};

// for 64-bits
template<> struct RandomIntRestrictor<64> {
    typedef SizedUnsignedInteger<64>::Type Type;

    static inline Type getRestrictedRandomInt(Type n, RandomState& state)
    {
        // First propagate leading 1 to all other bits
        Type mask = n;
        mask |= mask >> 1;
        mask |= mask >> 2;
        mask |= mask >> 4;
        mask |= mask >> 8;
        mask |= mask >> 16;
        mask |= mask >> 32;

        // Draw only that number of bits, until a number is in the desired range [0,n]
        // Worse case is number of loops proba descreasing in 1/2^nloops
        Type ret;
        do {
            ret = Accessor<64>::getRandomInt(state) & mask;
        } while( ret > n );

        return ret;
    }
};


// Now implement the Random functions

/* range checker.
   But why should clean caller code be slowed down by checks?
   => caller code should provide good arguments, or be fixed

/// Common function that will be used for all random integer types
template<typename an_int_type, int num_bounds, int min_excluded> struct RandomSwitcher {
    // random selection
    static inline an_int_type getMinMaxRandom(an_int_type min, an_int_type max, RandomState& state) {
        // Works in both signed and unsigned arithmetic
        if (max<=min) {
            if (max==min) return min; // easy
            return RandomSwitcher<an_int_type,num_bounds,(num_bounds==1)?(!min_excluded):min_excluded>::getMinMaxRandom(max, min, state);
        }

        // now max > min
        an_int_type range = max - min + 1;

        // overflow, asking the whole range of integers
        if (range==0) return getRandomBits<a_type>(sizeof(an_int_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS, state);

        // range >= 2, num_bounds <= 2, OK to subtract 2 - num_bounds
        range -= 2-num_bounds;
        // ask the impossible, like RandomEE(3,4)
        if (range == 0) return min;

        // This gives the number of possible integers to choose from (at least 1)
        // Now generate the number
        an_int_type ret = min + min_excluded + static_cast<an_int_type>(RandomIntRestrictor< sizeof(an_int_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS >::getRestrictedRandomInt(range,state));
        return ret;
    }
};
*/

#define SPECIALIZE_RANDOM_FOR_TYPE(a_type,use_signed) \
template<> a_type Random<a_type>(RandomState& state) { \
    return Accessor<sizeof(a_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS>::getRandomInt(state); \
} \
template<> a_type Random<true, true, a_type>(a_type min, a_type max, RandomState& state) { \
    return static_cast<a_type>(RandomIntRestrictor< sizeof(a_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS >::getRestrictedRandomInt(max-min,state)) + min; \
} \
template<> a_type Random<true, false, a_type>(a_type min, a_type max, RandomState& state) { \
    return static_cast<a_type>(RandomIntRestrictor< sizeof(a_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS >::getRestrictedRandomInt(max-min-1,state)) + min; \
} \
template<> a_type Random<false, true, a_type>(a_type min, a_type max, RandomState& state) { \
    return max - static_cast<a_type>(RandomIntRestrictor< sizeof(a_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS >::getRestrictedRandomInt(max-min-1,state)); \
} \
template<> a_type Random<false, false, a_type>(a_type min, a_type max, RandomState& state) { \
    return static_cast<a_type>(RandomIntRestrictor< sizeof(a_type)*STREFLOP_INTEGER_TYPES_CHAR_BITS >::getRestrictedRandomInt(max-min-2,state)) + min + 1; \
}
SPECIALIZE_RANDOM_FOR_TYPE(char,true)
SPECIALIZE_RANDOM_FOR_TYPE(unsigned char,false)
SPECIALIZE_RANDOM_FOR_TYPE(short,true)
SPECIALIZE_RANDOM_FOR_TYPE(unsigned short,false)
SPECIALIZE_RANDOM_FOR_TYPE(int,true)
SPECIALIZE_RANDOM_FOR_TYPE(unsigned int,false)
SPECIALIZE_RANDOM_FOR_TYPE(long,true)
SPECIALIZE_RANDOM_FOR_TYPE(unsigned long,false)
SPECIALIZE_RANDOM_FOR_TYPE(long long,true)
SPECIALIZE_RANDOM_FOR_TYPE(unsigned long long,false)


// Random for float types is even more dependent on size


/*

EXPERIMENTAL:

    The ULP_Random functions use a uniform distribution in the ULP space.
    This means, each possibly representable float is given exactly the same weight for the
    random choice. This is an exponential scale where there are as many numbers between
    successive powers of 2 (i.e as many numbers between 1 and 2 as there are between 1024 and 2048).
    This effectively corresponds to the maximum machine precision, but it is unfortunately
    not what one means by "uniform" in the traditional sense of the term (it is uniform in terms
    of bit patterns, so for the computer!)

    Algorithm: treat floats as binary pattern, thanks to IEEE754 ordered property
    => this gives a "range" like max-min for the integers, where the unit is ulp
    => this gives the maximum precision for floats, because a random number is chosen between exactly how many
    numbers can be represented with that float format in that range


#define SPECIALIZE_RANDOM_FOR_SIMPLE_ULP(X,Y) \
Simple ULP_Random ## X ## Y(Simple min, Simple max) { \
 \
    // Convert to signed integer for quick test of bit sign \
    SizedInteger<32>::Type imin = *reinterpret_cast<SizedUnsignedInteger<32>::Type*>(&min); \
    SizedInteger<32>::Type imax = *reinterpret_cast<SizedUnsignedInteger<32>::Type*>(&max); \
 \
    // Infinity is a perfectly fine number, with a bit pattern contiguous to the min and max floats \
    // This makes sense if excluding bounds: RandomEE(-inf,+inf) returns a possible float at random \
 \
    // Rule out NaNs \
    if (imin&0x7fffffff > 0x7f800000) return SimpleNaN; \
    if (imax&0x7fffffff > 0x7f800000) return SimpleNaN; \
 \
    // Convert to 2-complement representation \
    if (imin<0) imin = 0x80000000 - imin; \
    if (imax<0) imax = 0x80000000 - imax; \
 \
    // Now magically get an integer at random in that range \
    // This gives EXACTLY one choice per representable float \
    // It is non-uniform in the float space, but uniform in the bit-pattern space \
    SizedInteger<32>::Type iret = Random ## X ## Y(imin,imax); \
 \
    // convert back to 2-complement to IEEE754 \
    if (iret<0) iret = 0x80000000 - iret; \
 \
    // cast to float \
    return *reinterpret_cast<Simple*>(&iret); \
}
SPECIALIZE_RANDOM_FOR_SIMPLE_ULP(E,I)
SPECIALIZE_RANDOM_FOR_SIMPLE_ULP(E,E)
SPECIALIZE_RANDOM_FOR_SIMPLE_ULP(I,E)
SPECIALIZE_RANDOM_FOR_SIMPLE_ULP(I,I)
*/


// Return a random float
template<> Simple Random<Simple>(RandomState& state) {
    // Generate bits
    SizedUnsignedInteger<32>::Type ret = Accessor<32>::getRandomInt(state);

    // Discard NaNs and Inf, ignore sign
    while ((ret & 0x7fffffff) >= 0x7f800000) ret = Accessor<32>::getRandomInt(state);

    // cast to float
    return *reinterpret_cast<Simple*>(&ret);
}

// Random in 1..2 - ideal IE case
template<> Simple Random12<true,false,Simple>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<32>::Type r12 = Accessor<32>::getRandomInt(state);

    // Simple precision keeps only 23 bits
    r12 &= 0x007FFFFF;

    // Insert exponent so it's in the [1.0-2.0) range
    r12 |= 0x3F800000;

    return *reinterpret_cast<Simple*>(&r12);
}

// Random in 1..2 - near ideal EI case
template<> Simple Random12<false,true,Simple>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<32>::Type r12 = Accessor<32>::getRandomInt(state);

    // Simple precision keeps only 23 bits
    r12 &= 0x007FFFFF;

    // Insert exponent so it's in the [1.0-2.0) range
    r12 |= 0x3F800000;

    // Bitwise add 1 so it's in the (1.0-2.0] range
    r12 += 1;

    return *reinterpret_cast<Simple*>(&r12);
}

// Random in 1..2 - need to include both bounds
template<> Simple Random12<true,true,Simple>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<32>::Type r12 = Accessor<32>::getRandomInt(state);

    // Keep 2^23 + 1 possibilities, discard others
    // Note: %= operator is nicely converted into reciprocal multiply and shift by compiler
    r12 %= 0x00800001;
    // Choose to avoid % operator by having about 1/2 chance of rejection. Not faster.
//    while ((r12 &= 0x00FFFFFF) > 0x00800000) r12 = Accessor<32>::getRandomInt(state);

/* could also use multiply by reciprocal and then find remainder. For div by 0x00800001:
; dividend: register other than EAX or memory location
MOV    EAX, 0FFFFFE01h
MUL    dividend
SHR    EDX, 23
; quotient now in EDX
*/

    // bitwise add exponent so it's in the [1.0-2.0] range
    r12 += 0x3F800000;

    return *reinterpret_cast<Simple*>(&r12);
}

// Random in 1..2 - need to exclude both bounds
template<> Simple Random12<false,false,Simple>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<32>::Type r12 = Accessor<32>::getRandomInt(state);

    // Keep 2^23 - 1 possibilities
    //r12 %= 0x007FFFFF;
    // Choose to avoid % operator by having very small chance of rejection
    // Could we find a branchless version for % by 2^N-1 ?
    while ((r12 &= 0x007FFFFF) == 0x007FFFFF) r12 = Accessor<32>::getRandomInt(state);

    // bitwise add exponent so it's in the (1.0-2.0) range
    r12 += 0x3F800001;

    return *reinterpret_cast<Simple*>(&r12);
}


///////// Double versions  ///////////

// Return a random float
template<> Double Random<Double>(RandomState& state) {
    // Generate bits
    SizedUnsignedInteger<64>::Type ret = Accessor<64>::getRandomInt(state);

    // Discard NaNs and Inf, ignore sign
    while ((ret & 0x7fffffffffffffffULL) >= 0x7ff0000000000000ULL) ret = Accessor<64>::getRandomInt(state);

    // cast to Double
    return *reinterpret_cast<Double*>(&ret);
}


// Random in a 1..2 - ideal IE case
template<> Double Random12<true,false,Double>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<64>::Type r12 = Accessor<64>::getRandomInt(state);

    // Double precision keeps only 52 bits
    r12 &= 0x000FFFFFFFFFFFFFULL;

    // Insert exponent so it's in the [1.0-2.0) range
    r12 |= 0x3FF0000000000000ULL;

    // scale from 1-2 interval to the desired interval
    return *reinterpret_cast<Double*>(&r12);
}

// Random in a 1..2 - near ideal EI case
template<> Double Random12<false,true,Double>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<64>::Type r12 = Accessor<64>::getRandomInt(state);

    // Double precision keeps only 52 bits
    r12 &= 0x000FFFFFFFFFFFFFULL;

    // Insert exponent so it's in the [1.0-2.0) range
    r12 |= 0x3FF0000000000000ULL;

    // Bitwise add 1 so it's in the (1.0-2.0] range
    r12 += 1;

    // scale from 1-2 interval to the desired interval
    return *reinterpret_cast<Double*>(&r12);
}

// Random in a 1..2 - need to include both bounds
template<> Double Random12<true,true,Double>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<64>::Type r12 = Accessor<64>::getRandomInt(state);

    // Keep 2^52 + 1 possibilities
    // See comment in Simple version
    // allow %= only for 64-bit register machines
#if STREFLOP_RANDOM_GEN_SIZE == 64
    r12 %= 0x0010000000000001ULL;
#else
    // Choose to avoid % operator by having about 1/2 chance of rejection. Is this faster?
    while ((r12 &= 0x001FFFFFFFFFFFFFULL) > 0x0010000000000000ULL) r12 = Accessor<64>::getRandomInt(state);
#endif

    // bitwise add exponent so it's in the [1.0-2.0] range
    r12 += 0x3FF0000000000000ULL;

    return *reinterpret_cast<Double*>(&r12);
}

// Random in a 1..2 - need to exclude both bounds
template<> Double Random12<false,false,Double>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Generate bits
    SizedUnsignedInteger<64>::Type r12 = Accessor<64>::getRandomInt(state);

    // Keep 2^52 - 1 possibilities
    // See comment in Simple version
    // r12 %= 0x000FFFFFFFFFFFFFULL;
    // Choose to avoid % operator by having very small chance of rejection
    while ((r12 &= 0x000FFFFFFFFFFFFFULL) == 0x000FFFFFFFFFFFFFULL) r12 = Accessor<64>::getRandomInt(state);

    // bitwise add exponent so it's in the (1.0-2.0) range
    r12 += 0x3FF0000000000001ULL;

    return *reinterpret_cast<Double*>(&r12);
}


#ifdef Extended

// little endian
#if __FLOAT_WORD_ORDER == 1234

/// Little endian is fine, always the same offsets whatever the memory model
template<int Nbytes> struct ExtendedConverter {
    // Sign and exponent
    static inline SizedUnsignedInteger<16>::Type* sexpPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<16>::Type*>(reinterpret_cast<char*>(e)+8);
    }
    // Mantissa
    static inline SizedUnsignedInteger<64>::Type* mPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<64>::Type*>(e);
    }
};

// Big endian
#elif __FLOAT_WORD_ORDER == 4321
template<int Nbytes> struct ExtendedConverter {
}

/// Extended is softfloat
template<> struct ExtendedConverter<10> {
    // Sign and exponent
    static inline SizedUnsignedInteger<16>::Type* sexpPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<16>::Type*>(e);
    }
    // Mantissa
    static inline SizedUnsignedInteger<64>::Type* mPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<64>::Type*>(reinterpret_cast<char*>(e)+2);
    }
};

/// Default gcc model for x87 - 32 bits (or with -m96bit-long-double)
template<> struct ExtendedConverter<12> {
    // Sign and exponent
    static inline SizedUnsignedInteger<16>::Type* sexpPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<16>::Type*>(reinterpret_cast<char*>(e)+2);
    }
    // Mantissa
    static inline SizedUnsignedInteger<64>::Type* mPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<64>::Type*>(reinterpret_cast<char*>(e)+4);
    }
};

/// Default gcc model for x87 - 64 bits (or with -m128bit-long-double)
template<> struct ExtendedConverter<16> {
    // Sign and exponent
    static inline SizedUnsignedInteger<16>::Type* sexpPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<16>::Type*>(reinterpret_cast<char*>(e)+6);
    }
    // Mantissa
    static inline SizedUnsignedInteger<64>::Type* mPtr(Extended* e) {
        return reinterpret_cast<SizedUnsignedInteger<64>::Type*>(reinterpret_cast<char*>(e)+8);
    }
};
#else
#error unknown byte order
#endif


// Return a random float
template<> Extended Random<Extended>(RandomState& state) {
    // Work directly on Extended bits
    Extended ret;

    // Generate 63 bits for the mantissa
    *ExtendedConverter<sizeof(Extended)>::mPtr(&ret) = Accessor<64>::getRandomInt(state);

    // Generate 16 bits for the exponent
    *ExtendedConverter<sizeof(Extended)>::sexpPtr(&ret) = Accessor<16>::getRandomInt(state);

    // Discard NaNs and Inf, ignore sign
    while ((*ExtendedConverter<sizeof(Extended)>::sexpPtr(&ret) & 0x7fff) == 0x7fff)
        *ExtendedConverter<sizeof(Extended)>::sexpPtr(&ret) = Accessor<16>::getRandomInt(state);

    // x87 extended format oddity: the first mantissa bit (always 1 for normal numbers) is visible, not hidden!
    if ((*ExtendedConverter<sizeof(Extended)>::sexpPtr(&ret) & 0x7fff) != 0)
        *ExtendedConverter<sizeof(Extended)>::mPtr(&ret) |= 0x8000000000000000ULL;

    return ret;
}


// Random in 1..2 - ideal IE case
template<> Extended Random12<true,false,Extended>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Work directly on Extended bits
    Extended r12;

    // Generate 63 bits for the mantissa
    *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) = Accessor<64>::getRandomInt(state);

    // x87 extended format oddity: the first mantissa bit (always 1 for normal numbers) is visible, not hidden!
    // Since in this case this is a number between 1 and 2, this bit has to be set explicitly
    *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) |= 0x8000000000000000ULL;

    // Set exponent so it's in the [1.0-2.0) range
    *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x3FFF;

    // scale from 1-2 interval to the desired interval
    return r12;
}

// Random in 1..2 - near ideal EI case
template<> Extended Random12<false,true,Extended>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Work directly on Extended bits
    Extended r12;

    // Generate 63 bits for the mantissa
    *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) = Accessor<64>::getRandomInt(state);

    // x87 extended format oddity: the first mantissa bit (always 1 for normal numbers) is visible, not hidden!
    // Since in this case this is a number between 1 and 2, this bit has to be set explicitly
    *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) |= 0x8000000000000000LL;

    // Set exponent so it's in the (1.0-2.0] range
    // Replace 1.0 by 2.0
    if (*ExtendedConverter<sizeof(Extended)>::mPtr(&r12) == 0x8000000000000000LL)
        *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x4000;
    else
        *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x3FFF;

    return r12;
}

// Random in 1..2 - need to include both bounds
template<> Extended Random12<true,true,Extended>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Work directly on Extended bits
    Extended r12;

    // Generate 64 bits for the mantissa
    do {
        *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) = Accessor<64>::getRandomInt(state);
    }
    // Include both bounds : repeat the random get till it's in the desired range
    // Keep the possibility for 2.0 in addition to all [1.0-2.0)
    while (*ExtendedConverter<sizeof(Extended)>::mPtr(&r12) > 0x8000000000000000LL);

    // Set exponent so it's in the [1.0-2.0] range
    // Check if 2.0 was selected
    if (*ExtendedConverter<sizeof(Extended)>::mPtr(&r12) == 0x8000000000000000LL)
        *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x4000;
    // otherwise, set the correct mantissa bit and the correct exponent
    else {
        // x87 extended format oddity: the first mantissa bit (always 1 for normal numbers) is visible, not hidden!
        // Since in this case this is a number between 1 and 2, this bit has to be set explicitly
        *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) |= 0x8000000000000000LL;
        *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x3FFF;
    }

    return r12;
}

// Random in 1..2 - need to exclude both bounds
template<> Extended Random12<false,false,Extended>(RandomState& state) {

    // Get uniform number between 1 and 2 at max precision

    // Work directly on Extended bits
    Extended r12;

    // Generate 63 bits for the mantissa
    do {
        *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) = Accessor<64>::getRandomInt(state);
        // x87 extended format oddity: the first mantissa bit (always 1 for normal numbers) is visible, not hidden!
        // Since in this case this is a number between 1 and 2, this bit has to be set explicitly
        *ExtendedConverter<sizeof(Extended)>::mPtr(&r12) |= 0x8000000000000000LL;
    }
    // Exclude both bounds : repeat the random get till it's in the desired range
    // Remove the possibility for 1.0 compared to all [1.0-2.0)
    while (*ExtendedConverter<sizeof(Extended)>::mPtr(&r12) == 0x8000000000000000LL);

    // Set exponent so it's in the (1.0-2.0) range
    *ExtendedConverter<sizeof(Extended)>::sexpPtr(&r12) = 0x3FFF;

    // scale from 1-2 interval to the desired interval
    return r12;
}

#endif

// This is a way to hide the implementation from the header
// And also to ensure there is only one template instanciation, instead of duplicating
// the code in all object files
template<typename FloatType> static inline FloatType NRandom_Generic(FloatType *secondary, RandomState& state) {

    FloatType x, y, d;
    // Generate a point strictly inside the unit circle
    do {
        // Use IE as this is the most convenient for the generation,
        // any will do since the bounds are rejected anyway by unit circle strict comparison
        x = RandomIE(FloatType(-1.0), FloatType(1.0), state);
        y = RandomIE(FloatType(-1.0), FloatType(1.0), state);
        d = x*x + y*y;
    } while (d>=FloatType(1.0));
    // Convert from x/y to uniform
    FloatType conv = sqrt( FloatType(-2.0) * log(d) / d );
    // Use one result as secondary independent variable, if user wishes
    if (secondary) *secondary = x * conv;
    // return the other
    return y * conv;
}

// Specialize for the Float types declared in the header
template<> Simple NRandom(Simple *secondary, RandomState& state) {
    return NRandom_Generic<Simple>(secondary,state);
}

/*
template<> Double NRandom(Double *secondary, RandomState& state) {
    return NRandom_Generic<Double>(secondary,state);
}
#if defined(Extended)
template<> Extended NRandom(Extended *secondary, RandomState& state) {
    return NRandom_Generic<Extended>(secondary,state);
}
#endif
*/

// May save one mul
template<typename FloatType> static inline FloatType NRandom_Generic(FloatType mean, FloatType std_dev, FloatType *secondary, RandomState& state) {

    FloatType x, y, d;
    // Generate a point strictly inside the unit circle
    do {
        // Use IE as this is the most convenient for the generation,
        // any will do since the bounds are rejected anyway by unit circle strict comparison
        x = RandomIE(FloatType(-1.0), FloatType(1.0), state);
        y = RandomIE(FloatType(-1.0), FloatType(1.0), state);
        d = x*x + y*y;
    } while (d>=FloatType(1.0));
    // Convert from x/y to uniform
    FloatType conv = sqrt( FloatType(-2.0) * log(d) / d ) * std_dev;
    // Use one result as secondary independent variable, if user wishes
    if (secondary) *secondary = x * conv + mean;
    // return the other
    return y * conv + mean;
}

// Specialize for the Float types declared in the header
template<> Simple NRandom(Simple mean, Simple std_dev, Simple *secondary, RandomState& state) {
    return NRandom_Generic<Simple>(mean, std_dev, secondary,state);
}

/*
template<> Double NRandom(Double mean, Double std_dev, Double *secondary, RandomState& state) {
    return NRandom_Generic<Double>(mean, std_dev, secondary,state);
}
#if defined(Extended)
template<> Extended NRandom(Extended mean, Extended std_dev, Extended *secondary, RandomState& state) {
    return NRandom_Generic<Extended>(mean, std_dev, secondary,state);
}
#endif
*/

SizedUnsignedInteger<32>::Type RandomInit(RandomState& state) {
    return RandomInit(SizedUnsignedInteger<32>::Type(time(0)));
}

SizedUnsignedInteger<32>::Type RandomInit(SizedUnsignedInteger<32>::Type seed, RandomState& state) {
    init_genrand(seed,state);
    return state.seed;
}

SizedUnsignedInteger<32>::Type RandomSeed(RandomState& state) {
    return state.seed;
}

// Default state holder, so single threaded applications don't bother setting up an object
RandomState DefaultRandomState;

} // end streflop namespace