1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* See the import.pl script for potential modifications */
/* e_jnf.c -- Simple version of e_jn.c.
* Conversion to Simple by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_jnf.c,v 1.5f 1995/05/10 20:45:37 jtc Exp $";
#endif
#include "math.h"
#include "math_private.h"
namespace streflop_libm {
#ifdef __STDC__
static const Simple
#else
static Simple
#endif
two = 2.0000000000e+00f, /* 0x40000000 */
one = 1.0000000000e+00f; /* 0x3F800000 */
#ifdef __STDC__
static const Simple zero = 0.0000000000e+00f;
#else
static Simple zero = 0.0000000000e+00f;
#endif
#ifdef __STDC__
Simple __ieee754_jnf(int n, Simple x)
#else
Simple __ieee754_jnf(n,x)
int n; Simple x;
#endif
{
int32_t i,hx,ix, sgn;
Simple a, b, temp, di;
Simple z, w;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if J(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(n<0){
n = -n;
x = -x;
hx ^= 0x80000000;
}
if(n==0) return(__ieee754_j0f(x));
if(n==1) return(__ieee754_j1f(x));
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
x = fabsf(x);
if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */
b = zero;
else if((Simple)n<=x) {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
b = __ieee754_j1f(x);
for(i=1;i<n;i++){
temp = b;
b = b*((Simple)(i+i)/x) - a; /* avoid underflow */
a = temp;
}
} else {
if(ix<0x30800000) { /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if(n>33) /* underflow */
b = zero;
else {
temp = x*(Simple)0.5f; b = temp;
for (a=one,i=2;i<=n;i++) {
a *= (Simple)i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b/a;
}
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for Double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
Simple t,v;
Simple q0,q1,h,tmp; int32_t k,m;
w = (n+n)/(Simple)x; h = (Simple)2.0f/(Simple)x;
q0 = w; z = w+h; q1 = w*z - (Simple)1.0f; k=1;
while(q1<(Simple)1.0e9f) {
k += 1; z += h;
tmp = z*q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n+n;
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01f
* Double 7.09782712893383973096e+02f
* Extended 1.1356523406294143949491931077970765006170e+04f
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two/x;
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
if(tmp<(Simple)8.8721679688e+01f) {
for(i=n-1,di=(Simple)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
}
} else {
for(i=n-1,di=(Simple)(i+i);i>0;i--){
temp = b;
b *= di;
b = b/x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if(b>(Simple)1e10f) {
a /= b;
t /= b;
b = one;
}
}
}
b = (t*__ieee754_j0f(x)/b);
}
}
if(sgn==1) return -b; else return b;
}
#ifdef __STDC__
Simple __ieee754_ynf(int n, Simple x)
#else
Simple __ieee754_ynf(n,x)
int n; Simple x;
#endif
{
int32_t i,hx,ix;
u_int32_t ib;
int32_t sign;
Simple a, b, temp;
GET_FLOAT_WORD(hx,x);
ix = 0x7fffffff&hx;
/* if Y(n,NaN) is NaN */
if(ix>0x7f800000) return x+x;
if(ix==0) return -HUGE_VALF+x; /* -inf and overflow exception. */
if(hx<0) return zero/(zero*x);
sign = 1;
if(n<0){
n = -n;
sign = 1 - ((n&1)<<1);
}
if(n==0) return(__ieee754_y0f(x));
if(n==1) return(sign*__ieee754_y1f(x));
if(ix==0x7f800000) return zero;
a = __ieee754_y0f(x);
b = __ieee754_y1f(x);
/* quit if b is -inf */
GET_FLOAT_WORD(ib,b);
for(i=1;i<n&&ib!=0xff800000;i++){
temp = b;
b = ((Simple)(i+i)/x)*b - a;
GET_FLOAT_WORD(ib,b);
a = temp;
}
if(sign>0) return b; else return -b;
}
}
|