1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
|
/* See the import.pl script for potential modifications */
/* e_logf.c -- Simple version of e_log.c.
* Conversion to Simple by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
* adapted for log2 by Ulrich Drepper <drepper@cygnus.com>
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include "SMath.h"
#include "math_private.h"
namespace streflop_libm {
#ifdef __STDC__
static const Simple
#else
static Simple
#endif
ln2 = 0.69314718055994530942f,
two25 = 3.355443200e+07f, /* 0x4c000000 */
Lg1 = 6.6666668653e-01f, /* 3F2AAAAB */
Lg2 = 4.0000000596e-01f, /* 3ECCCCCD */
Lg3 = 2.8571429849e-01f, /* 3E924925 */
Lg4 = 2.2222198546e-01f, /* 3E638E29 */
Lg5 = 1.8183572590e-01f, /* 3E3A3325 */
Lg6 = 1.5313838422e-01f, /* 3E1CD04F */
Lg7 = 1.4798198640e-01f; /* 3E178897 */
#ifdef __STDC__
static const Simple zero = 0.0f;
#else
static Simple zero = 0.0f;
#endif
#ifdef __STDC__
Simple __ieee754_log2f(Simple x)
#else
Simple __ieee754_log2f(x)
Simple x;
#endif
{
Simple hfsq,f,s,z,R,w,t1,t2,dk;
int32_t k,ix,i,j;
GET_FLOAT_WORD(ix,x);
k=0;
if (ix < 0x00800000) { /* x < 2**-126 */
if ((ix&0x7fffffff)==0)
return -two25/(x-x); /* log(+-0)=-inf */
if (ix<0) return (x-x)/(x-x); /* log(-#) = NaN */
k -= 25; x *= two25; /* subnormal number, scale up x */
GET_FLOAT_WORD(ix,x);
}
if (ix >= 0x7f800000) return x+x;
k += (ix>>23)-127;
ix &= 0x007fffff;
i = (ix+(0x95f64<<3))&0x800000;
SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */
k += (i>>23);
dk = (Simple)k;
f = x-(Simple)1.0f;
if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */
if(f==zero) return dk;
R = f*f*((Simple)0.5f-(Simple)0.33333333333333333f*f);
return dk-(R-f)/ln2;
}
s = f/((Simple)2.0f+f);
z = s*s;
i = ix-(0x6147a<<3);
w = z*z;
j = (0x6b851<<3)-ix;
t1= w*(Lg2+w*(Lg4+w*Lg6));
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
i |= j;
R = t2+t1;
if(i>0) {
hfsq=(Simple)0.5f*f*f;
return dk-((hfsq-(s*(hfsq+R)))-f)/ln2;
} else {
return dk-((s*(f-R))-f)/ln2;
}
}
}
|