1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
|
"""
Objects that represent -- and generate code for -- C/C++ Python extension modules.
Modules and Sub-modules
=======================
A L{Module} object takes care of generating the code for a Python
module. The way a Python module is organized is as follows. There is
one "root" L{Module} object. There can be any number of
L{SubModule}s. Sub-modules themselves can have additional sub-modules.
Calling L{Module.generate} on the root module will trigger code
generation for the whole module, not only functions and types, but
also all its sub-modules.
In Python, a sub-module will appear as a I{built-in} Python module
that is available as an attribute of its parent module. For instance,
a module I{foo} having a sub-module I{xpto} appears like this::
|>>> import foo
|>>> foo.xpto
|<module 'foo.xpto' (built-in)>
Modules and C++ namespaces
==========================
Modules can be associated with specific C++ namespaces. This means,
for instance, that any C++ class wrapped inside that module must
belong to that C++ namespace. Example::
|>>> from cppclass import *
|>>> mod = Module("foo", cpp_namespace="::foo")
|>>> mod.add_class("Bar")
|<pybindgen.CppClass 'foo::Bar'>
When we have a toplevel C++ namespace which contains another nested
namespace, we want to wrap the nested namespace as a Python
sub-module. The method L{ModuleBase.add_cpp_namespace} makes it easy
to create sub-modules for wrapping nested namespaces. For instance::
|>>> from cppclass import *
|>>> mod = Module("foo", cpp_namespace="::foo")
|>>> submod = mod.add_cpp_namespace('xpto')
|>>> submod.add_class("Bar")
|<pybindgen.CppClass 'foo::xpto::Bar'>
"""
from function import Function, OverloadedFunction, CustomFunctionWrapper
from typehandlers.base import CodeBlock, DeclarationsScope, ReturnValue, TypeHandler
from typehandlers.codesink import MemoryCodeSink, CodeSink, FileCodeSink, NullCodeSink
from cppclass import CppClass
from cppexception import CppException
from enum import Enum
from container import Container
from converter_functions import PythonToCConverter, CToPythonConverter
import utils
import warnings
import traceback
class MultiSectionFactory(object):
"""
Abstract base class for objects providing support for
multi-section code generation, i.e., splitting the generated C/C++
code into multiple files. The generated code will generally have
the following structure:
1. For each section there is one source file specific to that section;
2. There is a I{main} source file, e.g. C{foomodule.cc}. Code
that does not belong to any section will be included in this
main file;
3. Finally, there is a common header file, (e.g. foomodule.h),
which is included by the main file and section files alike.
Typically this header file contains function prototypes and
type definitions.
@see: L{Module.generate}
"""
def get_section_code_sink(self, section_name):
"""
Create and/or return a code sink for a given section.
:param section_name: name of the section
:return: a L{CodeSink} object that will receive generated code belonging to the section C{section_name}
"""
raise NotImplementedError
def get_main_code_sink(self):
"""
Create and/or return a code sink for the main file.
"""
raise NotImplementedError
def get_common_header_code_sink(self):
"""
Create and/or return a code sink for the common header.
"""
raise NotImplementedError
def get_common_header_include(self):
"""
Return the argument for an #include directive to include the common header.
:returns: a string with the header name, including surrounding
"" or <>. For example, '"foomodule.h"'.
"""
raise NotImplementedError
class _SinkManager(object):
"""
Internal abstract base class for bridging differences between
multi-file and single-file code generation.
"""
def get_code_sink_for_wrapper(self, wrapper):
"""
:param wrapper: wrapper object
:returns: (body_code_sink, header_code_sink)
"""
raise NotImplementedError
def get_includes_code_sink(self):
raise NotImplementedError
def get_main_code_sink(self):
raise NotImplementedError
def close(self):
raise NotImplementedError
class _MultiSectionSinkManager(_SinkManager):
"""
Sink manager that deals with multi-section code generation.
"""
def __init__(self, multi_section_factory):
super(_MultiSectionSinkManager, self).__init__()
self.multi_section_factory = multi_section_factory
utils.write_preamble(self.multi_section_factory.get_common_header_code_sink())
self.multi_section_factory.get_main_code_sink().writeln(
"#include %s" % self.multi_section_factory.get_common_header_include())
self._already_initialized_sections = {}
self._already_initialized_sections['__main__'] = True
def get_code_sink_for_wrapper(self, wrapper):
header_sink = self.multi_section_factory.get_common_header_code_sink()
section = getattr(wrapper, "section", None)
if section is None:
return self.multi_section_factory.get_main_code_sink(), header_sink
else:
section_sink = self.multi_section_factory.get_section_code_sink(section)
if section not in self._already_initialized_sections:
self._already_initialized_sections[section] = True
section_sink.writeln("#include %s" % self.multi_section_factory.get_common_header_include())
return section_sink, header_sink
def get_includes_code_sink(self):
return self.multi_section_factory.get_common_header_code_sink()
def get_main_code_sink(self):
return self.multi_section_factory.get_main_code_sink()
def close(self):
pass
class _MonolithicSinkManager(_SinkManager):
"""
Sink manager that deals with single-section monolithic code generation.
"""
def __init__(self, code_sink):
super(_MonolithicSinkManager, self).__init__()
self.final_code_sink = code_sink
self.null_sink = NullCodeSink()
self.includes = MemoryCodeSink()
self.code_sink = MemoryCodeSink()
utils.write_preamble(code_sink)
def get_code_sink_for_wrapper(self, dummy_wrapper):
return self.code_sink, self.code_sink
def get_includes_code_sink(self):
return self.includes
def get_main_code_sink(self):
return self.code_sink
def close(self):
self.includes.flush_to(self.final_code_sink)
self.code_sink.flush_to(self.final_code_sink)
class ModuleBase(dict):
"""
ModuleBase objects can be indexed dictionary style to access contained types. Example::
>>> from enum import Enum
>>> from cppclass import CppClass
>>> m = Module("foo", cpp_namespace="foo")
>>> subm = m.add_cpp_namespace("subm")
>>> c1 = m.add_class("Bar")
>>> c2 = subm.add_class("Zbr")
>>> e1 = m.add_enum("En1", ["XX"])
>>> e2 = subm.add_enum("En2", ["XX"])
>>> m["Bar"] is c1
True
>>> m["foo::Bar"] is c1
True
>>> m["En1"] is e1
True
>>> m["foo::En1"] is e1
True
>>> m["badname"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'badname'
>>> m["foo::subm::Zbr"] is c2
True
>>> m["foo::subm::En2"] is e2
True
"""
def __init__(self, name, parent=None, docstring=None, cpp_namespace=None):
"""
Note: this is an abstract base class, see L{Module}
:param name: module name
:param parent: parent L{module<Module>} (i.e. the one that contains this submodule) or None if this is a root module
:param docstring: docstring to use for this module
:param cpp_namespace: C++ namespace prefix associated with this module
:return: a new module object
"""
super(ModuleBase, self).__init__()
self.parent = parent
self.docstring = docstring
self.submodules = []
self.enums = []
self.typedefs = [] # list of (wrapper, alias) tuples
self._forward_declarations_declared = False
self.cpp_namespace = cpp_namespace
if self.parent is None:
error_return = 'return;'
self.after_forward_declarations = MemoryCodeSink()
else:
self.after_forward_declarations = None
self.parent.submodules.append(self)
error_return = 'return NULL;'
self.prefix = None
self.init_function_name = None
self._name = None
self.name = name
path = self.get_namespace_path()
if path and path[0] == '::':
del path[0]
self.cpp_namespace_prefix = '::'.join(path)
self.declarations = DeclarationsScope()
self.functions = {} # name => OverloadedFunction
self.classes = []
self.containers = []
self.exceptions = []
self.before_init = CodeBlock(error_return, self.declarations)
self.after_init = CodeBlock(error_return, self.declarations,
predecessor=self.before_init)
self.c_function_name_transformer = None
self.set_strip_prefix(name + '_')
if parent is None:
self.header = MemoryCodeSink()
self.body = MemoryCodeSink()
self.one_time_definitions = {}
self.includes = []
else:
self.header = parent.header
self.body = parent.body
self.one_time_definitions = parent.one_time_definitions
self.includes = parent.includes
self._current_section = '__main__'
def get_current_section(self):
return self.get_root()._current_section
current_section = property(get_current_section)
def begin_section(self, section_name):
"""
Declare that types and functions registered with the module in
the future belong to the section given by that section_name
parameter, until a matching end_section() is called.
.. note::
:meth:`begin_section`/:meth:`end_section` are silently ignored
unless a :class:`MultiSectionFactory` object is used as code
generation output.
"""
if self.current_section != '__main__':
raise ValueError("begin_section called while current section not ended")
if section_name == '__main__':
raise ValueError ("__main__ not allowed as section name")
assert self.parent is None
self._current_section = section_name
def end_section(self, section_name):
"""
Declare the end of a section, i.e. further types and functions
will belong to the main module.
:param section_name: name of section; must match the one in
the previous :meth:`begin_section` call.
"""
assert self.parent is None
if self._current_section != section_name:
raise ValueError("end_section called for wrong section: expected %r, got %r"
% (self._current_section, section_name))
self._current_section = '__main__'
def get_name(self):
return self._name
def set_name(self, name):
self._name = name
if self.parent is None:
self.prefix = self.name.replace('.', '_')
self.init_function_name = "init%s" % (self.name.split('.')[-1],)
else:
self.prefix = self.parent.prefix + "_" + self.name
self.init_function_name = "init%s" % (self.prefix,)
name = property(get_name, set_name)
def get_submodule(self, submodule_name):
"get a submodule by its name"
for submodule in self.submodules:
if submodule.name == submodule_name:
return submodule
raise ValueError("submodule %s not found" % submodule_name)
def get_root(self):
":return: the root :class:`Module` (even if it is self)"
root = self
while root.parent is not None:
root = root.parent
return root
def set_strip_prefix(self, prefix):
"""Sets the prefix string to be used when transforming a C
function name into the python function name; the given prefix
string is removed from the C function name."""
def strip_prefix(c_name):
"""A C funtion name transformer that simply strips a
common prefix from the name"""
if c_name.startswith(prefix):
return c_name[len(prefix):]
else:
return c_name
self.c_function_name_transformer = strip_prefix
def set_c_function_name_transformer(self, transformer):
"""Sets the function to be used when transforming a C function
name into the python function name; the given given function
is called like this::
python_name = transformer(c_name)
"""
self.c_function_name_transformer = transformer
def add_include(self, include):
"""
Adds an additional include directive, needed to compile this python module
:param include: the name of the header file to include, including
surrounding "" or <>.
"""
include = utils.ascii(include)
assert include.startswith('"') or include.startswith('<')
assert include.endswith('"') or include.endswith('>')
if include not in self.includes:
self.includes.append(include)
def _add_function_obj(self, wrapper):
assert isinstance(wrapper, Function)
name = utils.ascii(wrapper.custom_name)
if name is None:
name = self.c_function_name_transformer(wrapper.function_name)
name = utils.get_mangled_name(name, wrapper.template_parameters)
try:
overload = self.functions[name]
except KeyError:
overload = OverloadedFunction(name)
self.functions[name] = overload
wrapper.module = self
wrapper.section = self.current_section
overload.add(wrapper)
def add_function(self, *args, **kwargs):
"""
Add a function to the module/namespace. See the documentation for
:meth:`Function.__init__` for information on accepted parameters.
"""
if len(args) >= 1 and isinstance(args[0], Function):
func = args[0]
warnings.warn("add_function has changed API; see the API documentation",
DeprecationWarning, stacklevel=2)
if len(args) == 2:
func.custom_name = args[1]
elif 'name' in kwargs:
assert len(args) == 1
func.custom_name = kwargs['name']
else:
assert len(args) == 1
assert len(kwargs) == 0
else:
try:
func = Function(*args, **kwargs)
except utils.SkipWrapper:
return None
self._add_function_obj(func)
return func
def add_custom_function_wrapper(self, *args, **kwargs):
"""
Add a function, using custom wrapper code, to the module/namespace. See the documentation for
:class:`pybindgen.function.CustomFunctionWrapper` for information on accepted parameters.
"""
try:
func = CustomFunctionWrapper(*args, **kwargs)
except utils.SkipWrapper:
return None
self._add_function_obj(func)
return func
def register_type(self, name, full_name, type_wrapper):
"""
Register a type wrapper with the module, for easy access in
the future. Normally should not be called by the programmer,
as it is meant for internal pybindgen use and called automatically.
:param name: type name without any C++ namespace prefix, or None
:param full_name: type name with a C++ namespace prefix, or None
:param type_wrapper: the wrapper object for the type (e.g. L{CppClass} or L{Enum})
"""
module = self
if name:
module[name] = type_wrapper
if full_name:
while module is not None:
module[full_name] = type_wrapper
module = module.parent
def _add_class_obj(self, class_):
"""
Add a class to the module.
:param class_: a CppClass object
"""
assert isinstance(class_, CppClass)
class_.module = self
class_.section = self.current_section
self.classes.append(class_)
self.register_type(class_.name, class_.full_name, class_)
def add_class(self, *args, **kwargs):
"""
Add a class to the module. See the documentation for
L{CppClass.__init__} for information on accepted parameters.
"""
if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], CppClass):
cls = args[0]
warnings.warn("add_class has changed API; see the API documentation",
DeprecationWarning, stacklevel=2)
else:
cls = CppClass(*args, **kwargs)
self._add_class_obj(cls)
return cls
def add_struct(self, *args, **kwargs):
"""
Add a struct to the module.
In addition to the parameters accepted by
L{CppClass.__init__}, this method accepts the following
keyword parameters:
- no_constructor (bool): if True, the structure will not
have a constructor by default (if omitted, it will be
considered to have a trivial constructor).
- no_copy (bool): if True, the structure will not
have a copy constructor by default (if omitted, it will be
considered to have a simple copy constructor).
"""
try:
no_constructor = kwargs['no_constructor']
except KeyError:
no_constructor = False
else:
del kwargs['no_constructor']
try:
no_copy = kwargs['no_copy']
except KeyError:
no_copy = False
else:
del kwargs['no_copy']
struct = CppClass(*args, **kwargs)
struct.stack_where_defined = traceback.extract_stack()
self._add_class_obj(struct)
if not no_constructor:
struct.add_constructor([])
if not no_copy:
struct.add_copy_constructor()
return struct
def add_cpp_namespace(self, name):
"""
Add a nested module namespace corresponding to a C++
namespace. If the requested namespace was already added, the
existing module is returned instead of creating a new one.
:param name: name of C++ namespace (just the last component,
not full scoped name); this also becomes the name of the
submodule.
:return: a L{SubModule} object that maps to this namespace.
"""
name = utils.ascii(name)
try:
return self.get_submodule(name)
except ValueError:
module = SubModule(name, parent=self, cpp_namespace=name)
module.stack_where_defined = traceback.extract_stack()
return module
def _add_enum_obj(self, enum):
"""
Add an enumeration.
"""
assert isinstance(enum, Enum)
self.enums.append(enum)
enum.module = self
enum.section = self.current_section
self.register_type(enum.name, enum.full_name, enum)
def add_enum(self, *args, **kwargs):
"""
Add an enumeration to the module. See the documentation for
L{Enum.__init__} for information on accepted parameters.
"""
if len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], Enum):
enum = args[0]
warnings.warn("add_enum has changed API; see the API documentation",
DeprecationWarning, stacklevel=2)
else:
enum = Enum(*args, **kwargs)
enum.stack_where_defined = traceback.extract_stack()
self._add_enum_obj(enum)
return enum
def _add_container_obj(self, container):
"""
Add a container to the module.
:param container: a L{Container} object
"""
assert isinstance(container, Container)
container.module = self
container.section = self.current_section
self.containers.append(container)
self.register_type(container.name, container.full_name, container)
def add_container(self, *args, **kwargs):
"""
Add a container to the module. See the documentation for
L{Container.__init__} for information on accepted parameters.
"""
try:
container = Container(*args, **kwargs)
except utils.SkipWrapper:
return None
container.stack_where_defined = traceback.extract_stack()
self._add_container_obj(container)
return container
def _add_exception_obj(self, exc):
assert isinstance(exc, CppException)
exc.module = self
exc.section = self.current_section
self.exceptions.append(exc)
self.register_type(exc.name, exc.full_name, exc)
def add_exception(self, *args, **kwargs):
"""
Add a C++ exception to the module. See the documentation for
L{CppException.__init__} for information on accepted parameters.
"""
exc = CppException(*args, **kwargs)
self._add_exception_obj(exc)
return exc
def declare_one_time_definition(self, definition_name):
"""
Internal helper method for code geneneration to coordinate
generation of code that can only be defined once per compilation unit
(note: assuming here one-to-one mapping between 'module' and
'compilation unit').
:param definition_name: a string that uniquely identifies the code
definition that will be added. If the given definition was
already declared KeyError is raised.
>>> module = Module('foo')
>>> module.declare_one_time_definition("zbr")
>>> module.declare_one_time_definition("zbr")
Traceback (most recent call last):
...
KeyError: 'zbr'
>>> module.declare_one_time_definition("bar")
"""
definition_name = utils.ascii(definition_name)
if definition_name in self.one_time_definitions:
raise KeyError(definition_name)
self.one_time_definitions[definition_name] = None
def generate_forward_declarations(self, code_sink):
"""(internal) generate forward declarations for types"""
assert not self._forward_declarations_declared
if self.classes or self.containers or self.exceptions:
code_sink.writeln('/* --- forward declarations --- */')
code_sink.writeln()
for class_ in [c for c in self.classes if c.import_from_module]:
class_.generate_forward_declarations(code_sink, self)
for class_ in [c for c in self.classes if not c.import_from_module]:
class_.generate_forward_declarations(code_sink, self)
for container in self.containers:
container.generate_forward_declarations(code_sink, self)
for exc in self.exceptions:
exc.generate_forward_declarations(code_sink, self)
## recurse to submodules
for submodule in self.submodules:
submodule.generate_forward_declarations(code_sink)
self._forward_declarations_declared = True
def get_module_path(self):
"""Get the full [module, submodule, submodule,...] path """
names = [self.name]
parent = self.parent
while parent is not None:
names.insert(0, parent.name)
parent = parent.parent
return names
def get_namespace_path(self):
"""Get the full [root_namespace, namespace, namespace,...] path (C++)"""
if not self.cpp_namespace:
names = []
else:
if self.cpp_namespace == '::':
names = []
else:
names = self.cpp_namespace.split('::')
if not names[0]:
del names[0]
parent = self.parent
while parent is not None:
if parent.cpp_namespace and parent.cpp_namespace != '::':
parent_names = parent.cpp_namespace.split('::')
if not parent_names[0]:
del parent_names[0]
names = parent_names + names
parent = parent.parent
return names
def do_generate(self, out, module_file_base_name=None):
"""(internal) Generates the module."""
assert isinstance(out, _SinkManager)
if self.parent is None:
## generate the include directives (only the root module)
forward_declarations_sink = MemoryCodeSink()
if not self._forward_declarations_declared:
self.generate_forward_declarations(forward_declarations_sink)
self.after_forward_declarations.flush_to(forward_declarations_sink)
if self.parent is None:
for include in self.includes:
out.get_includes_code_sink().writeln("#include %s" % include)
self.includes = None
forward_declarations_sink.flush_to(out.get_includes_code_sink())
else:
assert module_file_base_name is None, "only root modules can generate with alternate module_file_base_name"
## generate the submodules
for submodule in self.submodules:
submodule.do_generate(out)
m = self.declarations.declare_variable('PyObject*', 'm')
assert m == 'm'
if module_file_base_name is None:
mod_init_name = '.'.join(self.get_module_path())
else:
mod_init_name = module_file_base_name
self.before_init.write_code(
"m = Py_InitModule3((char *) \"%s\", %s_functions, %s);"
% (mod_init_name, self.prefix,
self.docstring and '"'+self.docstring+'"' or 'NULL'))
self.before_init.write_error_check("m == NULL")
main_sink = out.get_main_code_sink()
## generate the function wrappers
py_method_defs = []
if self.functions:
main_sink.writeln('/* --- module functions --- */')
main_sink.writeln()
for func_name, overload in self.functions.iteritems():
sink, header_sink = out.get_code_sink_for_wrapper(overload)
sink.writeln()
try:
utils.call_with_error_handling(overload.generate, (sink,), {}, overload)
except utils.SkipWrapper:
continue
try:
utils.call_with_error_handling(overload.generate_declaration, (main_sink,), {}, overload)
except utils.SkipWrapper:
continue
sink.writeln()
py_method_defs.append(overload.get_py_method_def(func_name))
del sink
## generate the function table
main_sink.writeln("static PyMethodDef %s_functions[] = {"
% (self.prefix,))
main_sink.indent()
for py_method_def in py_method_defs:
main_sink.writeln(py_method_def)
main_sink.writeln("{NULL, NULL, 0, NULL}")
main_sink.unindent()
main_sink.writeln("};")
## generate the classes
if self.classes:
main_sink.writeln('/* --- classes --- */')
main_sink.writeln()
for class_ in [c for c in self.classes if c.import_from_module]:
sink, header_sink = out.get_code_sink_for_wrapper(class_)
sink.writeln()
class_.generate(sink, self)
sink.writeln()
for class_ in [c for c in self.classes if not c.import_from_module]:
sink, header_sink = out.get_code_sink_for_wrapper(class_)
sink.writeln()
class_.generate(sink, self)
sink.writeln()
## generate the containers
if self.containers:
main_sink.writeln('/* --- containers --- */')
main_sink.writeln()
for container in self.containers:
sink, header_sink = out.get_code_sink_for_wrapper(container)
sink.writeln()
container.generate(sink, self)
sink.writeln()
## generate the exceptions
if self.exceptions:
main_sink.writeln('/* --- exceptions --- */')
main_sink.writeln()
for exc in self.exceptions:
sink, header_sink = out.get_code_sink_for_wrapper(exc)
sink.writeln()
exc.generate(sink, self)
sink.writeln()
# typedefs
for (wrapper, alias) in self.typedefs:
if isinstance(wrapper, CppClass):
cls = wrapper
cls.generate_typedef(self, alias)
## generate the enums
if self.enums:
main_sink.writeln('/* --- enumerations --- */')
main_sink.writeln()
for enum in self.enums:
sink, header_sink = out.get_code_sink_for_wrapper(enum)
sink.writeln()
enum.generate(sink)
enum.generate_declaration(header_sink, self)
sink.writeln()
## register the submodules
if self.submodules:
submodule_var = self.declarations.declare_variable('PyObject*', 'submodule')
for submodule in self.submodules:
self.after_init.write_code('%s = %s();' % (
submodule_var, submodule.init_function_name))
self.after_init.write_error_check('%s == NULL' % submodule_var)
self.after_init.write_code('Py_INCREF(%s);' % (submodule_var,))
self.after_init.write_code('PyModule_AddObject(m, (char *) "%s", %s);'
% (submodule.name, submodule_var,))
## flush the header section
self.header.flush_to(out.get_includes_code_sink())
## flush the body section
self.body.flush_to(main_sink)
## now generate the module init function itself
main_sink.writeln()
if self.parent is None:
main_sink.writeln('''
PyMODINIT_FUNC
#if defined(__GNUC__) && __GNUC__ >= 4
__attribute__ ((visibility("default")))
#endif''')
else:
main_sink.writeln("static PyObject *")
if module_file_base_name is None:
main_sink.writeln("%s(void)" % (self.init_function_name,))
else:
main_sink.writeln("init%s(void)" % (module_file_base_name,))
main_sink.writeln('{')
main_sink.indent()
self.declarations.get_code_sink().flush_to(main_sink)
self.before_init.sink.flush_to(main_sink)
self.after_init.write_cleanup()
self.after_init.sink.flush_to(main_sink)
if self.parent is not None:
main_sink.writeln("return m;")
main_sink.unindent()
main_sink.writeln('}')
def __repr__(self):
return "<pybindgen.module.Module %r>" % self.name
def add_typedef(self, wrapper, alias):
"""
Declares an equivalent to a typedef in C::
typedef Foo Bar;
:param wrapper: the wrapper object to alias (Foo in the example)
:param alias: name of the typedef alias
@note: only typedefs for CppClass objects have been
implemented so far; others will be implemented in the future.
"""
assert isinstance(wrapper, CppClass)
alias = utils.ascii(alias)
self.typedefs.append((wrapper, alias))
self.register_type(alias, alias, wrapper)
wrapper.register_alias(alias)
full_name = '::'.join(self.get_namespace_path() + [alias])
wrapper.register_alias(full_name)
class Module(ModuleBase):
def __init__(self, name, docstring=None, cpp_namespace=None):
"""
:param name: module name
:param docstring: docstring to use for this module
:param cpp_namespace: C++ namespace prefix associated with this module
"""
super(Module, self).__init__(name, docstring=docstring, cpp_namespace=cpp_namespace)
def generate(self, out, module_file_base_name=None):
"""Generates the module
:type out: a file object, L{FileCodeSink}, or L{MultiSectionFactory}
:param module_file_base_name: base name of the module file.
This is useful when we want to produce a _foo module that will
be imported into a foo module, to avoid making all types
docstrings contain _foo.Xpto instead of foo.Xpto.
"""
if isinstance(out, file):
out = FileCodeSink(out)
if isinstance(out, CodeSink):
sink_manager = _MonolithicSinkManager(out)
elif isinstance(out, MultiSectionFactory):
sink_manager = _MultiSectionSinkManager(out)
else:
raise TypeError
self.do_generate(sink_manager, module_file_base_name)
sink_manager.close()
def get_python_to_c_type_converter_function_name(self, value_type):
"""
Internal API, do not use.
"""
assert isinstance(value_type, TypeHandler)
ctype = value_type.ctype
mangled_ctype = utils.mangle_name(ctype)
converter_function_name = "_wrap_convert_py2c__%s" % mangled_ctype
return converter_function_name
def generate_python_to_c_type_converter(self, value_type, code_sink):
"""
Generates a python-to-c converter function for a given type
and returns the name of the generated function. If called
multiple times with the same name only the first time is the
converter function generated.
Use: this method is to be considered pybindgen internal, used
by code generation modules.
:type value_type: L{ReturnValue}
:type code_sink: L{CodeSink}
:returns: name of the converter function
"""
assert isinstance(value_type, TypeHandler)
converter_function_name = self.get_python_to_c_type_converter_function_name(value_type)
try:
self.declare_one_time_definition(converter_function_name)
except KeyError:
return converter_function_name
else:
converter = PythonToCConverter(value_type, converter_function_name)
self.header.writeln("\n%s;\n" % converter.get_prototype())
code_sink.writeln()
converter.generate(code_sink, converter_function_name)
code_sink.writeln()
return converter_function_name
def get_c_to_python_type_converter_function_name(self, value_type):
"""
Internal API, do not use.
"""
assert isinstance(value_type, TypeHandler)
ctype = value_type.ctype
mangled_ctype = utils.mangle_name(ctype)
converter_function_name = "_wrap_convert_c2py__%s" % mangled_ctype
return converter_function_name
def generate_c_to_python_type_converter(self, value_type, code_sink):
"""
Generates a c-to-python converter function for a given type
and returns the name of the generated function. If called
multiple times with the same name only the first time is the
converter function generated.
Use: this method is to be considered pybindgen internal, used
by code generation modules.
:type value_type: L{ReturnValue}
:type code_sink: L{CodeSink}
:returns: name of the converter function
"""
assert isinstance(value_type, TypeHandler)
converter_function_name = self.get_c_to_python_type_converter_function_name(value_type)
try:
self.declare_one_time_definition(converter_function_name)
except KeyError:
return converter_function_name
else:
converter = CToPythonConverter(value_type, converter_function_name)
self.header.writeln("\n%s;\n" % converter.get_prototype())
code_sink.writeln()
converter.generate(code_sink)
code_sink.writeln()
return converter_function_name
class SubModule(ModuleBase):
def __init__(self, name, parent, docstring=None, cpp_namespace=None):
"""
:param parent: parent L{module<Module>} (i.e. the one that contains this submodule)
:param name: name of the submodule
:param docstring: docstring to use for this module
:param cpp_namespace: C++ namespace component associated with this module
"""
super(SubModule, self).__init__(name, parent, docstring=docstring, cpp_namespace=cpp_namespace)
|