1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
#include "ATask.h"
#include "CGroup.h"
#include "CEconomy.h"
#include "CUnit.h"
int ATask::counter = 0;
ATask::ATask(AIClasses *_ai):ARegistrar(++counter) {
t = TASK_UNDEFINED;
ai = _ai;
active = false;
suspended = false;
isMoving = true;
pos = ZEROVECTOR;
initFrame = ai->cb->GetCurrentFrame();
validateInterval = 5 * 30; // 5 sec by default
nextValidateFrame = validateInterval;
priority = NORMAL;
queueID = 0;
}
void ATask::remove() {
LOG_II("ATask::remove " << (*this))
// NOTE: removal order below is VERY important
// remove current task from CTaskHandler, so it will mark this task
// to be killed on next update
std::list<ARegistrar*>::iterator j = records.begin();
while (j != records.end()) {
ARegistrar *regobj = *j; ++j;
regobj->remove(*this);
}
// remove all assisting tasks...
std::list<ATask*>::iterator i = assisters.begin();
while (i != assisters.end()) {
ATask *task = *i; ++i;
task->remove();
}
assert(assisters.size() == 0);
// detach task from groups...
std::list<CGroup*>::iterator itGroup = groups.begin();
while(itGroup != groups.end()) {
CGroup *g = *itGroup; ++itGroup;
removeGroup(*g);
}
active = false;
}
// called on Group removing
void ATask::remove(ARegistrar &group) {
CGroup *g = dynamic_cast<CGroup*>(&group);
assert(g != NULL);
removeGroup(*g);
if (groups.empty()) {
LOG_II("ATask::remove " << (*g))
remove();
}
}
CGroup* ATask::firstGroup() const {
if (groups.empty())
return NULL;
return groups.front();
}
void ATask::addGroup(CGroup &g) {
// FIXME: remove this when task queue will be supported
assert(!g.busy);
/*
if (g->busy) {
ATask *task = ai->tasks->getTask(g);
assert(task != NULL && task != this);
task->suspended = true;
// TODO: nextTask = task;
}
*/
g.reg(*this);
g.busy = true;
g.micro(false);
//g.abilities(true);
if ((g.cats&STATIC).any())
isMoving = false;
groups.push_back(&g);
}
void ATask::removeGroup(CGroup &g) {
g.unreg(*this);
if (!suspended) {
g.busy = false;
g.unwait();
g.micro(false);
//g.abilities(false);
if (isMoving) g.stop();
}
groups.remove(&g);
}
bool ATask::enemyScan(int& target) {
CGroup *group = firstGroup();
bool scout = (group->cats&SCOUTER).any();
bool aircraft = (group->cats&AIR).any();
TargetsFilter tf;
if (scout) {
tf.threatCeiling = 1.1f;
tf.threatRadius = 300.0f;
}
else {
if (aircraft) {
if ((group->cats&ASSAULT).any()) {
tf.exclude = AIR;
tf.threatCeiling = group->strength;
}
else {
tf.threatCeiling = 1.1f;
if((group->cats&ANTIAIR).any()) {
tf.exclude = LAND|SEA|SUB;
}
}
// TODO: replace with maneuvering radius?
tf.threatRadius = 300.0f;
}
else {
tf.exclude = SCOUTER;
tf.threatFactor = 0.001f;
tf.threatCeiling = group->strength;
tf.threatRadius = 0.0f;
}
}
// do not chase after aircraft with non-aircraft groups...
if (!aircraft)
tf.exclude |= AIR;
target = group->selectTarget(group->getScanRange(), tf);
if (target >= 0) {
group->attack(target);
group->micro(true);
if (scout)
LOG_II("ATask::enemyScan scout " << (*group) << " is microing enemy target Unit(" << target << ") (threat = " << tf.threatValue << ")")
else
LOG_II("ATask::enemyScan engage " << (*group) << " is microing enemy target Unit(" << target << ") (threat = " << tf.threatValue << ")")
return true;
}
return false;
}
bool ATask::resourceScan() {
bool isFeature = true;
int bestFeature = -1;
float bestDist = std::numeric_limits<float>::max();
CGroup *group = firstGroup();
// NOTE: do not use group->los because it is too small and does not
// correspond to real map units
float radius = group->buildRange;
float3 gpos = group->pos();
assert(radius > EPS);
// reclaim features when we can store metal only...
if (!ai->economy->mexceeding) {
const int numFeatures = ai->cb->GetFeatures(&ai->unitIDs[0], MAX_RANGESCAN_FEATURES, gpos, 1.5f * radius);
for (int i = 0; i < numFeatures; i++) {
const int uid = ai->unitIDs[i];
const FeatureDef *fd = ai->cb->GetFeatureDef(uid);
if (fd->metal > 0.0f) {
float3 fpos = ai->cb->GetFeaturePos(uid);
float dist = gpos.distance2D(fpos);
if (dist < bestDist) {
bestFeature = uid;
bestDist = dist;
}
}
}
}
// if there is no feature available then reclaim enemy unarmed building,
// hehe :)
if (bestFeature == -1) {
std::map<int, bool> occupied;
TargetsFilter tf;
tf.include = STATIC;
tf.exclude = ATTACKER;
tf.threatCeiling = 1.1f;
tf.threatRadius = radius;
bestFeature = group->selectTarget(radius, tf);
isFeature = false;
}
if (bestFeature != -1) {
group->reclaim(bestFeature, isFeature);
group->micro(true);
LOG_II("ATask::resourceScan group " << (*group) << " is reclaiming")
return true;
}
return false;
}
bool ATask::repairScan() {
if (ai->economy->mstall || ai->economy->estall)
return false;
int bestUnit = -1;
float bestScore = 0.0f;
CGroup *group = firstGroup();
float radius = group->buildRange;
float3 gpos = group->pos();
const int numUnits = ai->cb->GetFriendlyUnits(&ai->unitIDs[0], gpos, 2.0f * radius, MAX_RANGESCAN_FEATURES);
for (int i = 0; i < numUnits; i++) {
const int uid = ai->unitIDs[i];
if (ai->cb->UnitBeingBuilt(uid) || group->firstUnit()->key == uid)
continue;
const float healthDamage = ai->cb->GetUnitMaxHealth(uid) - ai->cb->GetUnitHealth(uid);
if (healthDamage > EPS) {
// TODO: somehow limit number of repairing builders per unit
const UnitDef *ud = ai->cb->GetUnitDef(uid);
const unitCategory cats = UC(ud->id);
if ((cats&AIR).any())
continue;
const float score = healthDamage + (CUnit::isDefense(ud) ? 10000.0f: 0.0f) + (CUnit::isStatic(ud) ? 5000.0f: 0.0f);
if (score > bestScore) {
bestUnit = uid;
bestScore = score;
}
}
}
if (bestUnit != -1) {
group->repair(bestUnit);
group->micro(true);
LOG_II("ATask::repairScan group " << (*group) << " is repairing")
return true;
}
return false;
}
int ATask::lifeFrames() const {
return ai->cb->GetCurrentFrame() - initFrame;
}
float ATask::lifeTime() const {
return (float)(ai->cb->GetCurrentFrame() - initFrame) / 30.0f;
}
void ATask::update() {
if (!active) return;
if (validateInterval > 0) {
int lifetime = lifeFrames();
if (lifetime >= nextValidateFrame) {
if (!onValidate()) {
remove();
return;
}
else
nextValidateFrame = lifetime + validateInterval;
}
}
if (suspended) return;
onUpdate();
}
std::ostream& operator<<(std::ostream &out, const ATask &atask) {
atask.toStream(out);
if (atask.assisters.size() > 0) {
out << " Assisters: amount(" << atask.assisters.size() << ") [";
std::list<ATask*>::const_iterator i;
for (i = atask.assisters.begin(); i != atask.assisters.end(); ++i) {
CGroup *group = (*i)->firstGroup();
if (group)
out << (*group);
}
out << "]";
}
return out;
}
|