1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
#include "CDefenseMatrix.h"
#include <math.h>
#include <limits>
#include "CAI.h"
#include "CUnit.h"
#include "CUnitTable.h"
#include "CThreatMap.h"
#include "CIntel.h"
CDefenseMatrix::CDefenseMatrix(AIClasses *ai) {
this->ai = ai;
hm = ai->cb->GetHeightMap();
X = ai->cb->GetMapWidth();
Z = ai->cb->GetMapHeight();
drawMatrix = false;
}
CDefenseMatrix::~CDefenseMatrix() {
std::multimap<float, Cluster*>::iterator x;
for (x = clusters.begin(); x != clusters.end(); ++x)
delete x->second;
}
float3 CDefenseMatrix::getBestDefendedPos(int n) {
if (clusters.empty())
return ERRORVECTOR;
n = std::min<int>(n, clusters.size() - 1);
std::multimap<float, Cluster*>::iterator i;
int j = 0;
for (i = clusters.begin(); i != clusters.end(); ++i) {
if (j == n)
break;
j++;
}
return i->second->center;
}
float3 CDefenseMatrix::getDefenseBuildSite(UnitType* tower) {
Cluster *c = (--clusters.end())->second;
float3 dir = ai->intel->getEnemyVector() - c->center;
dir.SafeNormalize();
float alpha = 0.0f;
switch(c->defenses) {
case 1: alpha = M_PI; break;
case 2: alpha = -M_PI/2.0f; break;
case 3: alpha = M_PI/2.0f; break;
default: alpha = 0.0f; break;
}
dir.x = dir.x*cos(alpha)-dir.z*sin(alpha);
dir.z = dir.x*sin(alpha)+dir.z*cos(alpha);
dir *= tower->def->maxWeaponRange*0.5f;
float3 pos = dir + c->center;
float3 best = pos;
float radius = tower->def->maxWeaponRange*0.3f;
float min = std::numeric_limits<float>::max();
float max = std::numeric_limits<float>::min();
float maxHeight = std::numeric_limits<float>::min();
float D = ((ai->intel->getEnemyVector() - pos).Length2D() + radius)/HEIGHT2REAL;
int R = ceil(radius);
for (int i = -R; i <= R; i++) {
for (int j = -R; j <= R; j++) {
int x = round((pos.x+j)/HEIGHT2REAL);
int z = round((pos.z+i)/HEIGHT2REAL);
if (x < 0 || z < 0 || x > X-1 || z > Z-1)
continue;
float3 dist = ai->intel->getEnemyVector() - float3(pos.x+j,pos.y,pos.z+i);
dist /= HEIGHT2REAL;
float height = hm[ID(x,z)]*(D - dist.Length2D());
if (height > maxHeight) {
best = float3(pos);
best.x += j;
best.z += i;
maxHeight = height;
}
if (hm[ID(x,z)] < min)
min = hm[ID(x,z)];
if (hm[ID(x,z)] > max)
max = hm[ID(x,z)];
}
}
best.y = ai->cb->GetElevation(best.x, best.z);
return (max - min) > 20.0f ? best : pos;
}
int CDefenseMatrix::getClusters() {
int bigClusters = 0;
std::multimap<float, Cluster*>::iterator i;
for (i = clusters.begin(); i != clusters.end(); ++i) {
/*
if (i->second->members.size() > (DIFFICULTY_HARD - ai->difficulty))
bigClusters++;
*/
if (i->second->members.size() > 2)
bigClusters++;
}
return bigClusters;
}
void CDefenseMatrix::update() {
std::multimap<float, Cluster*>::iterator x;
std::map<int, Cluster*> buildingToCluster;
std::map<int, CUnit*> buildings;
for (x = clusters.begin(); x != clusters.end(); ++x)
delete x->second;
clusters.clear();
totalValue = 0.0f;
/* Gather the non attacking, non mobile buildings */
std::map<int, CUnit*>::iterator i, j;
std::multimap<float, CUnit*>::iterator k;
for (i = ai->unittable->staticUnits.begin(); i != ai->unittable->staticUnits.end(); ++i) {
if ((i->second->type->cats&ATTACKER).none())
buildings[i->first] = i->second;
}
/* Calculate cumulative defensive power */
float sumDefPower = 0.0f;
std::map<int, CUnit*>::iterator l;
for (l = ai->unittable->defenses.begin(); l != ai->unittable->defenses.end(); ++l)
sumDefPower += ai->cb->GetUnitPower(l->first);
/* Determine clusters */
for (i = buildings.begin(); i != buildings.end(); ++i) {
/* Continue if the building is already contained in a cluster */
if (buildingToCluster.find(i->first) != buildingToCluster.end())
continue;
/* Define a new cluster */
Cluster *c = new Cluster();
c->members.insert(std::pair<float,CUnit*>(i->second->type->cost, i->second));
buildingToCluster[i->first] = c;
float3 summedCenter(i->second->pos());
c->value = getValue(i->second);
for (++(j = i); j != buildings.end(); ++j) {
/* Continue if the building is already contained in a cluster */
if (buildingToCluster.find(j->first) != buildingToCluster.end())
continue;
/* If the unit is within range of the cluster, add it to the cluster */
const float3 pos1 = j->second->pos();
for (k = c->members.begin(); k != c->members.end(); ++k) {
const float3 pos2 = k->second->pos();
if ((pos1 - pos2).Length2D() <= CLUSTER_RADIUS) {
float buildingValue = getValue(j->second);
c->members.insert(std::pair<float,CUnit*>(buildingValue, j->second));
c->value += buildingValue;
summedCenter += pos1;
buildingToCluster[j->first] = c;
break;
}
}
}
/* Calculate coverage of current defense for this cluster */
c->center = (summedCenter / c->members.size());
for (l = ai->unittable->defenses.begin(); l != ai->unittable->defenses.end(); ++l) {
const float3 pos1 = l->second->pos();
float range = l->second->def->maxWeaponRange*0.8f;
float power = ai->cb->GetUnitPower(l->first)/sumDefPower;
bool hasDefense = false;
for (k = c->members.begin(); k != c->members.end(); ++k) {
const float3 pos2 = k->second->pos();
float dist = (pos1 - pos2).Length2D();
if (dist < range) {
c->value -= (power*(k->first*(range-dist))) / c->members.size();
hasDefense = true;
}
}
if (hasDefense)
c->defenses++;
}
/* Add the cluster */
clusters.insert(std::pair<float, Cluster*>(c->value, c));
totalValue += c->value;
/* All buildings have a cluster, stop */
if (buildingToCluster.size() == buildings.size())
break;
}
if (drawMatrix)
draw();
}
float CDefenseMatrix::getValue(CUnit* unit) {
return unit->type->cost;
}
bool CDefenseMatrix::isPosInBounds(const float3 &pos) const {
std::multimap<float, Cluster*>::const_iterator i;
for (i = clusters.begin(); i != clusters.end(); ++i) {
if(i->second->center.distance2D(pos) <= CLUSTER_RADIUS * 1.5f)
return true;
}
return false;
}
float CDefenseMatrix::distance2D(const float3 &pos) const {
float result = std::numeric_limits<float>::max();
std::multimap<float, Cluster*>::const_iterator i;
for (i = clusters.begin(); i != clusters.end(); ++i) {
float distance = i->second->center.distance2D(pos);
if (distance < result)
result = distance;
}
return result;
}
bool CDefenseMatrix::switchDebugMode() {
drawMatrix = !drawMatrix;
return drawMatrix;
}
void CDefenseMatrix::draw() {
std::multimap<float, Cluster*>::iterator i;
for (i = clusters.begin(); i != clusters.end(); ++i) {
int group = int(i->first);
float3 p0(i->second->center);
p0.y = ai->cb->GetElevation(p0.x, p0.z) + 10.0f;
if (i->second->members.size() == 1) {
float3 p1(p0);
p1.y += 100.0f;
ai->cb->CreateLineFigure(p0, p1, 10.0f, 0, MULTIPLEXER, group);
}
else {
std::multimap<float, CUnit*>::iterator j;
for (j = i->second->members.begin(); j != i->second->members.end(); j++) {
float3 p2 = j->second->pos();
ai->cb->CreateLineFigure(p0, p2, 5.0f, 0, MULTIPLEXER, group);
}
}
ai->cb->SetFigureColor(group, 0.0f, 0.0f, i->first/totalValue, 1.0f);
}
}
|