1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "CollisionVolume.h"
#include "Rendering/Models/3DModel.h"
#include "Sim/Units/Unit.h"
#include "Sim/Features/Feature.h"
#include "System/Matrix44f.h"
#include "System/myMath.h"
#include "System/StringUtil.h"
CR_BIND(CollisionVolume, )
CR_REG_METADATA(CollisionVolume, (
CR_MEMBER(fullAxisScales),
CR_IGNORED(halfAxisScales),
CR_IGNORED(halfAxisScalesSqr),
CR_IGNORED(halfAxisScalesInv),
CR_MEMBER(axisOffsets),
CR_IGNORED(volumeBoundingRadius),
CR_IGNORED(volumeBoundingRadiusSq),
CR_MEMBER(volumeType),
CR_MEMBER(volumeAxes),
CR_MEMBER(ignoreHits),
CR_MEMBER(useContHitTest),
CR_MEMBER(defaultToFootPrint),
CR_MEMBER(defaultToPieceTree),
CR_POSTLOAD(PostLoad)
))
// base ctor (CREG-only)
CollisionVolume::CollisionVolume():
fullAxisScales(OnesVector * 2.0f),
halfAxisScales(OnesVector),
halfAxisScalesSqr(OnesVector),
halfAxisScalesInv(OnesVector),
axisOffsets(ZeroVector),
volumeBoundingRadius(1.0f),
volumeBoundingRadiusSq(1.0f),
volumeType(COLVOL_TYPE_SPHERE),
ignoreHits(false),
useContHitTest(COLVOL_HITTEST_CONT),
defaultToFootPrint(false),
defaultToPieceTree(false)
{
// set the axes s.t. cylinders start z-aligned
volumeAxes[0] = COLVOL_AXIS_Z;
volumeAxes[1] = COLVOL_AXIS_X;
volumeAxes[2] = COLVOL_AXIS_Y;
}
CollisionVolume& CollisionVolume::operator = (const CollisionVolume& v) {
fullAxisScales = v.fullAxisScales;
halfAxisScales = v.halfAxisScales;
halfAxisScalesSqr = v.halfAxisScalesSqr;
halfAxisScalesInv = v.halfAxisScalesInv;
axisOffsets = v.axisOffsets;
volumeBoundingRadius = v.volumeBoundingRadius;
volumeBoundingRadiusSq = v.volumeBoundingRadiusSq;
volumeType = v.volumeType;
volumeAxes[0] = v.volumeAxes[0];
volumeAxes[1] = v.volumeAxes[1];
volumeAxes[2] = v.volumeAxes[2];
ignoreHits = v.ignoreHits;
useContHitTest = v.useContHitTest;
defaultToFootPrint = v.defaultToFootPrint;
defaultToPieceTree = v.defaultToPieceTree;
return *this;
}
CollisionVolume::CollisionVolume(
const char cvTypeChar,
const char cvAxisChar,
const float3& cvScales,
const float3& cvOffsets
) {
// default-initialize
*this = CollisionVolume();
int cvType = COLVOL_TYPE_SPHERE;
int cvAxis = COLVOL_AXIS_Z;
switch (cvTypeChar) {
case 'E': case 'e': { cvType = COLVOL_TYPE_ELLIPSOID; } break; // "[E|e]ll..."
case 'C': case 'c': { cvType = COLVOL_TYPE_CYLINDER; } break; // "[C|c]yl..."
case 'B': case 'b': { cvType = COLVOL_TYPE_BOX; } break; // "[B|b]ox"
case 'S': case 's': { cvType = COLVOL_TYPE_SPHERE; } break; // "[S|s]ph..."
default: {} break;
}
if (cvType == COLVOL_TYPE_CYLINDER) {
switch (cvAxisChar) {
case 'X': case 'x': { cvAxis = COLVOL_AXIS_X; } break;
case 'Y': case 'y': { cvAxis = COLVOL_AXIS_Y; } break;
case 'Z': case 'z': { cvAxis = COLVOL_AXIS_Z; } break;
default: {} break; // just use the z-axis
}
}
InitShape(cvScales, cvOffsets, cvType, COLVOL_HITTEST_CONT, cvAxis);
}
void CollisionVolume::PostLoad()
{
SetAxisScales(fullAxisScales);
SetBoundingRadius();
}
void CollisionVolume::InitShape(
const float3& scales,
const float3& offsets,
const int vType,
const int tType,
const int pAxis)
{
// make sure none of the scales are ever negative or zero
//
// if the clamped vector is <1, 1, 1> (ie. all scales were <= 1.0f)
// then we assume a "default volume" is wanted and the unit/feature
// instances will be assigned spheres (of size model->radius)
//
float3 clampedScales = float3::max(scales, OnesVector);
// assign these here, since we can be
// called from outside the constructor
volumeType = std::max(vType, 0) % (COLVOL_TYPE_SPHERE + 1);
volumeAxes[0] = std::max(pAxis, 0) % (COLVOL_AXIS_Z + 1);
axisOffsets = offsets;
useContHitTest = (tType == COLVOL_HITTEST_CONT);
switch (volumeAxes[0]) {
case COLVOL_AXIS_X: {
volumeAxes[1] = COLVOL_AXIS_Y;
volumeAxes[2] = COLVOL_AXIS_Z;
} break;
case COLVOL_AXIS_Y: {
volumeAxes[1] = COLVOL_AXIS_X;
volumeAxes[2] = COLVOL_AXIS_Z;
} break;
case COLVOL_AXIS_Z: {
volumeAxes[1] = COLVOL_AXIS_X;
volumeAxes[2] = COLVOL_AXIS_Y;
} break;
}
FixTypeAndScale(clampedScales);
SetAxisScales(clampedScales);
SetBoundingRadius();
}
void CollisionVolume::SetBoundingRadius() {
// set the radius of the minimum bounding sphere
// that encompasses this custom collision volume
// (for early-out testing)
// NOTE:
// this must be called manually after either
// a call to SetAxisScales or to RescaleAxes
switch (volumeType) {
case COLVOL_TYPE_BOX: {
// would be an over-estimation for cylinders
volumeBoundingRadiusSq = halfAxisScalesSqr.x + halfAxisScalesSqr.y + halfAxisScalesSqr.z;
volumeBoundingRadius = math::sqrt(volumeBoundingRadiusSq);
} break;
case COLVOL_TYPE_CYLINDER: {
const float prhs = halfAxisScales[volumeAxes[0]]; // primary axis half-scale
const float sahs = halfAxisScales[volumeAxes[1]]; // 1st secondary axis half-scale
const float sbhs = halfAxisScales[volumeAxes[2]]; // 2nd secondary axis half-scale
const float mshs = std::max(sahs, sbhs); // max. secondary axis half-scale
volumeBoundingRadiusSq = prhs * prhs + mshs * mshs;
volumeBoundingRadius = math::sqrt(volumeBoundingRadiusSq);
} break;
case COLVOL_TYPE_SPHERE: {
volumeBoundingRadius = halfAxisScales.x;
volumeBoundingRadiusSq = volumeBoundingRadius * volumeBoundingRadius;
} break;
case COLVOL_TYPE_ELLIPSOID: {
volumeBoundingRadius = std::max(halfAxisScales.x, std::max(halfAxisScales.y, halfAxisScales.z));
volumeBoundingRadiusSq = volumeBoundingRadius * volumeBoundingRadius;
} break;
}
}
void CollisionVolume::SetAxisScales(const float3& scales) {
fullAxisScales = scales;
halfAxisScales = fullAxisScales * 0.5f;
halfAxisScalesSqr = halfAxisScales * halfAxisScales;
halfAxisScalesInv = OnesVector / halfAxisScales;
}
void CollisionVolume::RescaleAxes(const float3& scales) {
fullAxisScales *= scales;
halfAxisScales *= scales;
// h*h --> h*h*s*s; 1/h --> 1/h/s = 1/(h*s)
halfAxisScalesSqr *= (scales * scales);
halfAxisScalesInv /= scales;
}
void CollisionVolume::FixTypeAndScale(float3& scales) {
// NOTE:
// prevent Lua (which calls InitShape directly) from
// creating non-uniform spheres to emulate ellipsoids
if (volumeType == COLVOL_TYPE_SPHERE) {
scales.x = std::max(scales.x, std::max(scales.y, scales.z));
scales.y = scales.x;
scales.z = scales.x;
return;
}
if (volumeType == COLVOL_TYPE_ELLIPSOID) {
if (scales.x == scales.y && scales.y == scales.z) {
volumeType = COLVOL_TYPE_SPHERE;
} else {
//Disallow insane ellipsoids
const float minValue = std::fmax(scales.x, std::max(scales.y, scales.z)) * 0.02f;
scales.x = std::max(scales.x, minValue);
scales.y = std::max(scales.y, minValue);
scales.z = std::max(scales.z, minValue);
}
return;
}
if (volumeType == COLVOL_TYPE_CYLINDER) {
scales[volumeAxes[1]] = std::max(scales[volumeAxes[1]], scales[volumeAxes[2]]);
scales[volumeAxes[2]] = scales[volumeAxes[1]];
}
}
float3 CollisionVolume::GetWorldSpacePos(const CSolidObject* o, const float3& extOffsets) const {
// collision-volumes are always centered on midPos
return (o->midPos + o->GetObjectSpaceVec(axisOffsets + extOffsets));
}
float CollisionVolume::GetPointSurfaceDistance(const CUnit* u, const LocalModelPiece* lmp, const float3& pos) const {
return (GetPointSurfaceDistance(u, lmp, u->GetTransformMatrix(true), pos));
}
float CollisionVolume::GetPointSurfaceDistance(const CFeature* f, const LocalModelPiece* lmp, const float3& pos) const {
return (GetPointSurfaceDistance(f, lmp, f->GetTransformMatrixRef(true), pos));
}
float CollisionVolume::GetPointSurfaceDistance(
const CSolidObject* obj,
const LocalModelPiece* lmp,
const CMatrix44f& mat,
const float3& pos
) const {
CMatrix44f vm = mat;
if ((obj->collisionVolume).DefaultToPieceTree() && lmp != NULL) {
// NOTE: if we get here, <this> is the piece-volume
assert(this == lmp->GetCollisionVolume());
// transform into piece-space relative to pos
vm <<= lmp->GetModelSpaceMatrix();
} else {
// SObj::GetTransformMatrix does not include this
// (its translation component is pos, not midPos)
vm.Translate(obj->relMidPos);
}
vm.Translate(GetOffsets());
vm.InvertAffineInPlace();
return (GetPointSurfaceDistance(vm, pos));
}
float CollisionVolume::GetPointSurfaceDistance(const CMatrix44f& mv, const float3& p) const {
// transform <p> from world- to volume-space
float3 pv = mv.Mul(p);
float d = 0.0f;
switch (volumeType) {
case COLVOL_TYPE_BOX: {
// always clamp <pv> to box (!) surface
// (so minimum distance is always zero)
pv.x = ((int(pv.x >= 0.0f) * 2) - 1) * std::max(math::fabs(pv.x), halfAxisScales.x);
pv.y = ((int(pv.y >= 0.0f) * 2) - 1) * std::max(math::fabs(pv.y), halfAxisScales.y);
pv.z = ((int(pv.z >= 0.0f) * 2) - 1) * std::max(math::fabs(pv.z), halfAxisScales.z);
// calculate the closest surface point
float3 pt;
pt.x = Clamp(pv.x, -halfAxisScales.x, halfAxisScales.x);
pt.y = Clamp(pv.y, -halfAxisScales.y, halfAxisScales.y);
pt.z = Clamp(pv.z, -halfAxisScales.z, halfAxisScales.z);
// float l = std::min(pv.x - pt.x, std::min(pv.y - pt.y, pv.z - pt.z));
d = pv.distance(pt);
} break;
case COLVOL_TYPE_SPHERE: {
float l = pv.Length();
d = std::max(l - volumeBoundingRadius, 0.0f);
//float3 pt = (pv / std::max(0.01f, l)) * d;
} break;
case COLVOL_TYPE_CYLINDER: {
// code below is only valid for non-ellipsoidal cylinders
assert(halfAxisScales [volumeAxes[1]] == halfAxisScales [volumeAxes[2]]);
assert(halfAxisScalesSqr[volumeAxes[1]] == halfAxisScalesSqr[volumeAxes[2]]);
switch (volumeAxes[0]) {
case COLVOL_AXIS_X: { d = GetCylinderDistance(pv, 0, 1, 2); } break;
case COLVOL_AXIS_Y: { d = GetCylinderDistance(pv, 1, 0, 2); } break;
case COLVOL_AXIS_Z: { d = GetCylinderDistance(pv, 2, 0, 1); } break;
}
} break;
case COLVOL_TYPE_ELLIPSOID: {
d = GetEllipsoidDistance(pv);
} break;
default: {
assert(false);
} break;
}
return d;
}
float CollisionVolume::GetCylinderDistance(const float3& pv, size_t axisA, size_t axisB, size_t axisC) const
{
const float pSq = (pv[axisB] * pv[axisB]) + (pv[axisC] * pv[axisC]);
const float rSq = (halfAxisScalesSqr[axisB] + halfAxisScalesSqr[axisC]) * 0.5f;
float d = 0.0f;
if (pv[axisA] >= -halfAxisScales[axisA] && pv[axisA] <= halfAxisScales[axisA]) {
/* case 1: point is between end-cap bounds along primary axis */
d = std::max(math::sqrt(pSq) - math::sqrt(rSq), 0.0f);
} else {
if (pSq <= rSq) {
/* case 2: point is outside end-cap bounds but inside inf-tube */
d = std::max(math::fabs(pv[axisA]) - halfAxisScales[axisA], 0.0f);
} else {
/* case 3: compute orthogonal distance to end-cap edge (rim) */
const float l = Square(math::fabs(pv[axisA]) - halfAxisScales[axisA]);
d = Square(std::max(math::sqrt(pSq) - math::sqrt(rSq), 0.0f));
d = math::sqrt(l + d);
}
}
return d;
}
#define MAX_ITERATIONS 10
#define THRESHOLD 0.001
//Newton's method according to http://wwwf.imperial.ac.uk/~rn/distance2ellipse.pdf
float CollisionVolume::GetEllipsoidDistance(const float3& pv) const
{
const float3& abc1 = halfAxisScales; // {a, b, c}
const float3& abc2 = halfAxisScalesSqr; // {a2, b2, c2}
assert(abc1.x > 0.0f && abc1.y > 0.0f && abc1.z > 0.0f);
assert(abc2.x > 0.0f && abc2.y > 0.0f && abc2.z > 0.0f);
const float3 xyz1 = float3::fabs(pv); // {x, y, z}
const float3 xyz1abc1 = (xyz1 ) * abc1; // {xa, yb, zc}
const float3 xyz2abc2 = (xyz1 * xyz1) / abc2; // {x2_a2, y2_b2, z2_c2}, same as xyzSq * Square(halfAxisScalesInv)
//bail if inside the ellipsoid
if (xyz2abc2.dot(OnesVector) <= 1.0f)
return 0.0f;
//Initial guess
float theta = math::atan2(abc1.x * xyz1.y, abc1.y * xyz1.x);
float phi = math::atan2(xyz1.z, abc1.z * math::sqrt(xyz2abc2.x + xyz2abc2.y));
float currDist = 0.0f;
float lastDist = 0.0f;
//Iterations
for (int i = 0; i < MAX_ITERATIONS; i++) {
const float sint = math::sin(theta);
const float cost = math::cos(theta);
const float sinp = math::sin(phi);
const float cosp = math::cos(phi);
{
const float3 angs = {cosp * cost, cosp * sint, sinp};
const float3 fxyz = (abc1 * angs) - xyz1; // {fx, fy, fz}
lastDist = currDist;
currDist = fxyz.Length();
if (math::fabsf(currDist - lastDist) < THRESHOLD * currDist)
break;
}
const float sin2t = sint * sint;
const float xacost_ybsint = xyz1abc1.x * cost + xyz1abc1.y * sint;
const float xasint_ybcost = xyz1abc1.x * sint - xyz1abc1.y * cost;
const float a2b2costsint = (abc2.x - abc2.y) * cost * sint;
const float a2cos2t_b2sin2t_c2 = abc2.x * cost * cost + abc2.y * sin2t - abc2.z;
const float d1 = a2b2costsint * cosp - xasint_ybcost;
const float d2 = a2cos2t_b2sin2t_c2 * sinp * cosp - sinp * xacost_ybsint + xyz1abc1.z * cosp;
//Derivative matrix
const float a11 = (abc2.x - abc2.y) * (1 - 2 * sin2t) * cosp - xacost_ybsint;
const float a12 = -a2b2costsint * sinp;
const float a21 = 2 * a12 * cosp + sinp * xasint_ybcost;
const float a22 = a2cos2t_b2sin2t_c2 * (1 - 2 * sinp * sinp) - cosp * xacost_ybsint - xyz1abc1.z;
const float invDet = 1.0f / (a11 * a22 - a21 * a12);
theta += (a12 * d2 - a22 * d1) * invDet;
theta = Clamp(theta, 0.0f, math::HALFPI);
phi += (a21 * d1 - a11 * d2) * invDet;
phi = Clamp(phi, 0.0f, math::HALFPI);
}
return currDist;
}
|