1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cstring>
#include <ostream>
#include <deque>
#include "PathFinder.h"
#include "PathFinderDef.h"
#include "PathFlowMap.hpp"
#include "PathHeatMap.hpp"
#include "PathLog.h"
#include "PathMemPool.h"
#include "Map/Ground.h"
#include "Map/ReadMap.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/Misc/GeometricObjects.h"
#define ENABLE_PATH_DEBUG 0
#define ENABLE_DIAG_TESTS 1
using namespace Bitwise;
PFMemPool pfMemPool;
static const CMoveMath::BlockType squareMobileBlockBits = (CMoveMath::BLOCK_MOBILE | CMoveMath::BLOCK_MOVING | CMoveMath::BLOCK_MOBILE_BUSY);
static const CPathFinder::BlockCheckFunc blockCheckFuncs[2] = {
CMoveMath::IsBlockedNoSpeedModCheckThreadUnsafe,
CMoveMath::IsBlockedNoSpeedModCheck
};
// both indexed by PATHOPT* bitmasks
static float3 PF_DIRECTION_VECTORS_3D[PATH_DIRECTIONS << 1];
static float PF_DIRECTION_COSTS[PATH_DIRECTIONS << 1];
CPathFinder::CPathFinder(bool threadSafe): IPathFinder(1)
{
blockCheckFunc = blockCheckFuncs[threadSafe];
dummyCacheItem = CPathCache::CacheItem{IPath::Error, {}, {-1, -1}, {-1, -1}, -1.0f, -1};
}
void CPathFinder::InitStatic() {
// initialize direction-vectors table
for (int i = 0; i < (PATH_DIRECTIONS << 1); ++i) {
PF_DIRECTION_VECTORS_3D[i].x = PF_DIRECTION_VECTORS_2D[i].x;
PF_DIRECTION_VECTORS_3D[i].z = PF_DIRECTION_VECTORS_2D[i].y;
PF_DIRECTION_VECTORS_3D[i].Normalize();
}
// initialize direction-costs table
// note: PATH_NODE_SPACING should not affect these
PF_DIRECTION_COSTS[PATHOPT_LEFT ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_UP ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_DOWN ] = 1.0f;
PF_DIRECTION_COSTS[PATHOPT_LEFT | PATHOPT_UP ] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_UP ] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_DOWN] = 1.4142f;
PF_DIRECTION_COSTS[PATHOPT_LEFT | PATHOPT_DOWN] = 1.4142f;
}
const int2* CPathFinder::GetDirectionVectorsTable2D() { return (&PF_DIRECTION_VECTORS_2D[0]); }
const float3* CPathFinder::GetDirectionVectorsTable3D() { return (&PF_DIRECTION_VECTORS_3D[0]); }
IPath::SearchResult CPathFinder::DoRawSearch(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const CSolidObject* owner
) {
if (!moveDef.allowRawMovement)
return IPath::Error;
const int2 strtBlk = BlockIdxToPos(mStartBlockIdx);
const int2 goalBlk = {int(pfDef.goalSquareX), int(pfDef.goalSquareZ)};
const int2 diffBlk = {std::abs(goalBlk.x - strtBlk.x), std::abs(goalBlk.y - strtBlk.y)};
// has not been set yet, DoSearch is called after us
// const int2 goalBlk = BlockIdxToPos(mGoalBlockIdx);
if ((Square(diffBlk.x) + Square(diffBlk.y)) > Square(pfDef.maxRawPathLen))
return IPath::Error;
const/*expr*/ auto StepFunc = [](const int2& dir, const int2& dif, int2& pos, int2& err) {
pos.x += (dir.x * (err.y >= 0));
pos.y += (dir.y * (err.y <= 0));
err.x -= (dif.y * (err.y >= 0));
err.x += (dif.x * (err.y <= 0));
};
const int2 fwdStepDir = int2{(goalBlk.x > strtBlk.x), (goalBlk.y > strtBlk.y)} * 2 - int2{1, 1};
const int2 revStepDir = int2{(strtBlk.x > goalBlk.x), (strtBlk.y > goalBlk.y)} * 2 - int2{1, 1};
int2 blkStepCtr = {diffBlk.x + diffBlk.y, diffBlk.x + diffBlk.y};
int2 fwdStepErr = {diffBlk.x - diffBlk.y, diffBlk.x - diffBlk.y};
int2 revStepErr = fwdStepErr;
int2 fwdTestBlk = strtBlk;
int2 revTestBlk = goalBlk;
// test bidirectionally so bad goal-squares cause early exits
// NOTE:
// no need for integration with backtracking in FinishSearch
// the final "path" only contains startPos which is consumed
// immediately, after which NextWayPoint keeps returning the
// goal until owner reaches it
for (blkStepCtr += int2{1, 1}; (blkStepCtr.x > 0 && blkStepCtr.y > 0); blkStepCtr -= int2{1, 1}) {
{
if ((blockCheckFunc(moveDef, fwdTestBlk.x, fwdTestBlk.y, owner) & CMoveMath::BLOCK_STRUCTURE) != 0)
return IPath::Error;
if (CMoveMath::GetPosSpeedMod(moveDef, fwdTestBlk.x, fwdTestBlk.y) <= pfDef.minRawSpeedMod)
return IPath::Error;
}
{
if ((blockCheckFunc(moveDef, revTestBlk.x, revTestBlk.y, owner) & CMoveMath::BLOCK_STRUCTURE) != 0)
return IPath::Error;
if (CMoveMath::GetPosSpeedMod(moveDef, revTestBlk.x, revTestBlk.y) <= pfDef.minRawSpeedMod)
return IPath::Error;
}
// NOTE: for odd-length paths, center square is tested twice
if ((std::abs(fwdTestBlk.x - revTestBlk.x) <= 1) && (std::abs(fwdTestBlk.y - revTestBlk.y) <= 1))
break;
StepFunc(fwdStepDir, diffBlk * 2, fwdTestBlk, fwdStepErr);
StepFunc(revStepDir, diffBlk * 2, revTestBlk, revStepErr);
// skip if exactly crossing a vertex (in either direction)
blkStepCtr.x -= (fwdStepErr.y == 0);
blkStepCtr.y -= (revStepErr.y == 0);
fwdStepErr.y = fwdStepErr.x;
revStepErr.y = revStepErr.x;
}
return IPath::Ok;
}
IPath::SearchResult CPathFinder::DoSearch(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const CSolidObject* owner
) {
bool foundGoal = false;
while (!openBlocks.empty() && (openBlockBuffer.GetSize() < maxBlocksToBeSearched)) {
// get the open square with lowest expected path-cost
PathNode* openSquare = const_cast<PathNode*>(openBlocks.top());
openBlocks.pop();
// check if this PathNode has become obsolete
if (blockStates.fCost[openSquare->nodeNum] != openSquare->fCost)
continue;
// check if the goal has been reached
if (pfDef.IsGoal(openSquare->nodePos.x, openSquare->nodePos.y)) {
mGoalBlockIdx = openSquare->nodeNum;
mGoalHeuristic = 0.0f;
foundGoal = true;
break;
}
if (!pfDef.WithinConstraints(openSquare->nodePos.x, openSquare->nodePos.y)) {
blockStates.nodeMask[openSquare->nodeNum] |= PATHOPT_CLOSED;
dirtyBlocks.push_back(openSquare->nodeNum);
continue;
}
TestNeighborSquares(moveDef, pfDef, openSquare, owner);
}
if (foundGoal)
return IPath::Ok;
// could not reach goal within <maxBlocksToBeSearched> exploration limit
if (openBlockBuffer.GetSize() >= maxBlocksToBeSearched)
return IPath::GoalOutOfRange;
// could not reach goal from this starting position if nothing to left to explore
if (openBlocks.empty())
return IPath::GoalOutOfRange;
// should be unreachable
return IPath::Error;
}
void CPathFinder::TestNeighborSquares(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const PathNode* square,
const CSolidObject* owner
) {
struct SquareState {
CMoveMath::BlockType blockMask = CMoveMath::BLOCK_IMPASSABLE;
float speedMod = 0.0f;
bool inSearch = false;
};
SquareState ngbStates[PATH_DIRECTIONS];
// precompute structure-blocked state and speedmod for all neighbors
for (unsigned int dir = 0; dir < PATH_DIRECTIONS; dir++) {
const unsigned int optDir = PathDir2PathOpt(dir);
const int2 ngbSquareCoors = square->nodePos + PF_DIRECTION_VECTORS_2D[optDir];
const unsigned int ngbSquareIdx = BlockPosToIdx(ngbSquareCoors);
if (static_cast<unsigned>(ngbSquareCoors.x) >= nbrOfBlocks.x || static_cast<unsigned>(ngbSquareCoors.y) >= nbrOfBlocks.y)
continue;
if (blockStates.nodeMask[ngbSquareIdx] & (PATHOPT_CLOSED | PATHOPT_BLOCKED)) //FIXME
continue;
SquareState& sqState = ngbStates[dir];
// IsBlockedNoSpeedModCheck; very expensive call
if ((sqState.blockMask = blockCheckFunc(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, owner)) & CMoveMath::BLOCK_STRUCTURE) {
blockStates.nodeMask[ngbSquareIdx] |= PATHOPT_CLOSED;
dirtyBlocks.push_back(ngbSquareIdx);
continue; // early-out (20% chance)
}
if (!pfDef.dirIndependent) {
sqState.speedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, PF_DIRECTION_VECTORS_3D[optDir]);
} else {
// PE search; use positional speed-mods since PE assumes path-costs
// are bidirectionally symmetric between parent and child vertices
// no gain placing this in front of the above code, only has a ~2%
// chance (heavily depending on the map) to early-out
//
// only close node if search is directionally independent, otherwise
// it is possible we might enter it from another (better) direction
if ((sqState.speedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y)) == 0.0f) {
blockStates.nodeMask[ngbSquareIdx] |= PATHOPT_CLOSED;
dirtyBlocks.push_back(ngbSquareIdx);
}
}
sqState.inSearch = (sqState.speedMod != 0.0f && pfDef.WithinConstraints(ngbSquareCoors.x, ngbSquareCoors.y));
}
const auto CanTestSquareSM = [&](const int dir) { return (ngbStates[dir].speedMod != 0.0f); };
const auto CanTestSquareIS = [&](const int dir) { return (ngbStates[dir].inSearch); };
// first test squares along the cardinal directions
for (unsigned int dir: PATHDIR_CARDINALS) {
if (!CanTestSquareSM(dir))
continue;
TestBlock(moveDef, pfDef, square, owner, PathDir2PathOpt(dir), ngbStates[dir].blockMask, ngbStates[dir].speedMod);
}
#if ENABLE_DIAG_TESTS
// next test the diagonal squares
//
// don't search diagonally if there is a blocking object
// (or blocking terrain!) in one of the two side squares
// e.g. do not consider the edge (p, q) passable if X is
// impassable in this situation:
// +---+---+
// | X | q |
// +---+---+
// | p | X |
// +---+---+
//
// *** IMPORTANT ***
//
// if either side-square is merely outside the constrained
// area but the diagonal square is not, we do consider the
// edge passable since we still need to be able to jump to
// diagonally adjacent PE-blocks!
//
const auto TestDiagSquare = [&](const int dirX, const int dirY, const int dirXY) {
if (!CanTestSquareSM(dirXY) || !CanTestSquareSM(dirX) || !CanTestSquareSM(dirY))
return;
if (!CanTestSquareIS(dirXY) && (!CanTestSquareIS(dirX) || !CanTestSquareIS(dirY)))
return;
TestBlock(moveDef, pfDef, square, owner, PathDir2PathOpt(dirXY), ngbStates[dirXY].blockMask, ngbStates[dirXY].speedMod);
};
TestDiagSquare(PATHDIR_LEFT, PATHDIR_UP, PATHDIR_LEFT_UP );
TestDiagSquare(PATHDIR_RIGHT, PATHDIR_UP, PATHDIR_RIGHT_UP );
TestDiagSquare(PATHDIR_LEFT, PATHDIR_DOWN, PATHDIR_LEFT_DOWN );
TestDiagSquare(PATHDIR_RIGHT, PATHDIR_DOWN, PATHDIR_RIGHT_DOWN);
#endif
// mark this square as closed
blockStates.nodeMask[square->nodeNum] |= PATHOPT_CLOSED;
dirtyBlocks.push_back(square->nodeNum);
}
bool CPathFinder::TestBlock(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const PathNode* parentSquare,
const CSolidObject* owner,
const unsigned int pathOptDir,
const unsigned int blockStatus,
float speedMod
) {
testedBlocks++;
// initial calculations of the new block
const int2 square = parentSquare->nodePos + PF_DIRECTION_VECTORS_2D[pathOptDir];
const unsigned int sqrIdx = BlockPosToIdx(square);
// bounds-check
assert(static_cast<unsigned>(square.x) < nbrOfBlocks.x);
assert(static_cast<unsigned>(square.y) < nbrOfBlocks.y);
assert((blockStates.nodeMask[sqrIdx] & (PATHOPT_CLOSED | PATHOPT_BLOCKED)) == 0);
assert((blockStatus & CMoveMath::BLOCK_STRUCTURE) == 0);
assert(speedMod != 0.0f);
if (pfDef.testMobile && moveDef.avoidMobilesOnPath && (blockStatus & squareMobileBlockBits)) {
if (blockStatus & CMoveMath::BLOCK_MOBILE_BUSY) {
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_BUSY_MULT];
} else if (blockStatus & CMoveMath::BLOCK_MOBILE) {
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_IDLE_MULT];
} else { // (blockStatus & CMoveMath::BLOCK_MOVING)
speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_MOVE_MULT];
}
}
const float heatCost = (pfDef.testMobile) ? (PathHeatMap::GetInstance())->GetHeatCost(square.x, square.y, moveDef, ((owner != NULL)? owner->id: -1U)) : 0.0f;
//const float flowCost = (pfDef.testMobile) ? (PathFlowMap::GetInstance())->GetFlowCost(square.x, square.y, moveDef, pathOptDir) : 0.0f;
const float extraCost = blockStates.GetNodeExtraCost(square.x, square.y, pfDef.synced);
const float dirMoveCost = (1.0f + heatCost) * PF_DIRECTION_COSTS[pathOptDir];
const float nodeCost = (dirMoveCost / speedMod) + extraCost;
const float gCost = parentSquare->gCost + nodeCost; // g
const float hCost = pfDef.Heuristic(square.x, square.y, BLOCK_SIZE); // h
const float fCost = gCost + hCost; // f
if (blockStates.nodeMask[sqrIdx] & PATHOPT_OPEN) {
// already in the open set, look for a cost-improvement
if (blockStates.fCost[sqrIdx] <= fCost)
return true;
blockStates.nodeMask[sqrIdx] &= ~PATHOPT_CARDINALS;
}
// if heuristic says this node is closer to goal than previous h-estimate, keep it
if (!pfDef.exactPath && hCost < mGoalHeuristic) {
mGoalBlockIdx = sqrIdx;
mGoalHeuristic = hCost;
}
// store and mark this square as open (expanded, but not yet pulled from pqueue)
openBlockBuffer.SetSize(openBlockBuffer.GetSize() + 1);
assert(openBlockBuffer.GetSize() < MAX_SEARCHED_NODES_PF);
PathNode* os = openBlockBuffer.GetNode(openBlockBuffer.GetSize());
os->fCost = fCost;
os->gCost = gCost;
os->nodePos = square;
os->nodeNum = sqrIdx;
openBlocks.push(os);
blockStates.SetMaxCost(NODE_COST_F, std::max(blockStates.GetMaxCost(NODE_COST_F), fCost));
blockStates.SetMaxCost(NODE_COST_G, std::max(blockStates.GetMaxCost(NODE_COST_G), gCost));
blockStates.fCost[sqrIdx] = os->fCost;
blockStates.gCost[sqrIdx] = os->gCost;
blockStates.nodeMask[sqrIdx] |= (PATHOPT_OPEN | pathOptDir);
dirtyBlocks.push_back(sqrIdx);
return true;
}
void CPathFinder::FinishSearch(const MoveDef& moveDef, const CPathFinderDef& pfDef, IPath::Path& foundPath) const
{
if (pfDef.needPath) {
// backtrack
int2 square = BlockIdxToPos(mGoalBlockIdx);
unsigned int blockIdx = mGoalBlockIdx;
unsigned int numNodes = 0;
{
while (blockIdx != mStartBlockIdx) {
blockIdx = BlockPosToIdx(square -= PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS]);
numNodes += 1;
}
// note: <squares> is only used for heatmapping (via PathManager::GetDetailedPathSquares)
foundPath.squares.reserve(numNodes);
foundPath.path.reserve(numNodes);
// reset
square = BlockIdxToPos(blockIdx = mGoalBlockIdx);
}
// for path adjustment (cutting corners)
// make sure we don't match anything
std::deque<int2> prvSquares = {square, square};
while (true) {
foundPath.squares.push_back(square);
foundPath.path.emplace_back(square.x * SQUARE_SIZE, CMoveMath::yLevel(moveDef, square.x, square.y), square.y * SQUARE_SIZE);
// try to cut corners
assert(prvSquares.size() == 2);
AdjustFoundPath(moveDef, foundPath, prvSquares[0], prvSquares[1], square);
prvSquares.pop_front();
prvSquares.push_back(square);
if (blockIdx == mStartBlockIdx)
break;
square -= PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS];
blockIdx = BlockPosToIdx(square);
}
if (!foundPath.path.empty())
foundPath.pathGoal = foundPath.path[0];
}
foundPath.pathCost = blockStates.fCost[mGoalBlockIdx];
}
/** Helper function for SmoothMidWaypoint */
static inline void FixupPath3Pts(const MoveDef& moveDef, const float3 p1, float3& p2, const float3 p3)
{
#if ENABLE_PATH_DEBUG
float3 old = p2;
#endif
p2.x = 0.5f * (p1.x + p3.x);
p2.z = 0.5f * (p1.z + p3.z);
p2.y = CMoveMath::yLevel(moveDef, p2);
#if ENABLE_PATH_DEBUG
geometricObjects->AddLine(old + UpVector * 10.0f, p2 + UpVector * 10.0f, 5, 10, 600, 0);
#endif
}
void CPathFinder::SmoothMidWaypoint(
const int2 testSqr,
const int2 prevSqr,
const MoveDef& moveDef,
IPath::Path& foundPath
) const {
constexpr float COSTMOD = 1.39f; // (math::sqrt(2) + 1) / math::sqrt(3)
const int tstSqrIdx = BlockPosToIdx(testSqr);
const int prvSqrIdx = BlockPosToIdx(prevSqr);
if ((blockStates.nodeMask[tstSqrIdx] & PATHOPT_BLOCKED) != 0)
return;
if (blockStates.fCost[tstSqrIdx] > (COSTMOD * blockStates.fCost[prvSqrIdx]))
return;
const float3& p2 = foundPath.path[foundPath.path.size() - 3];
float3& p1 = foundPath.path[foundPath.path.size() - 2];
const float3& p0 = foundPath.path[foundPath.path.size() - 1];
FixupPath3Pts(moveDef, p0, p1, p2);
}
/*
* This function takes the current and previous two waypoints and detects when they form a
* "soft" (45 degrees, i.e. north-then-northwest) curve. If so, it then smooths the middle
* waypoint to decrease the angle between p1-p2 and p2-p0. Hard turns like north-then-west
* can and will not be smoothed.
*/
void CPathFinder::AdjustFoundPath(
const MoveDef& moveDef,
IPath::Path& foundPath,
const int2& p1, // two squares before p0 (current)
const int2& p2, // one square before p0 (current)
const int2& p0
) const {
int2 curDir = (p2 - p0);
int2 prvDir = (p1 - p0) - curDir; // FIXME?
assert((curDir.x % PATH_NODE_SPACING) == 0);
assert((curDir.y % PATH_NODE_SPACING) == 0);
assert((prvDir.x % PATH_NODE_SPACING) == 0);
assert((prvDir.y % PATH_NODE_SPACING) == 0);
curDir /= PATH_NODE_SPACING;
prvDir /= PATH_NODE_SPACING;
if (foundPath.path.size() < 3)
return;
for (unsigned pathDir = PATHDIR_LEFT; pathDir < PATH_DIRECTIONS; ++pathDir) {
// find the pathDir matching the p2-p0 segment
if (curDir != PE_DIRECTION_VECTORS[pathDir])
continue;
const bool lhTurn = (prvDir == PE_DIRECTION_VECTORS[(pathDir + PATH_DIRECTIONS - 1) % PATH_DIRECTIONS]);
const bool rhTurn = (prvDir == PE_DIRECTION_VECTORS[(pathDir + 1) % PATH_DIRECTIONS]);
if (rhTurn || lhTurn)
SmoothMidWaypoint(p0 + (prvDir * PATH_NODE_SPACING), p2, moveDef, foundPath);
break;
}
}
|