1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#ifndef MATRIX44F_H
#define MATRIX44F_H
#include "System/float3.h"
#include "System/float4.h"
class CMatrix44f
{
public:
CR_DECLARE_STRUCT(CMatrix44f)
CMatrix44f();
CMatrix44f(const CMatrix44f& mat);
CMatrix44f(const float3 pos, const float3 x, const float3 y, const float3 z);
CMatrix44f(const float rotX, const float rotY, const float rotZ);
explicit CMatrix44f(const float3 pos);
bool IsOrthoNormal() const;
bool IsIdentity() const;
CMatrix44f& LoadIdentity();
void SetUpVector(const float3 up);
CMatrix44f& RotateX(float angle); // (pitch) angle in radians
CMatrix44f& RotateY(float angle); // ( yaw) angle in radians
CMatrix44f& RotateZ(float angle); // ( roll) angle in radians
CMatrix44f& Rotate(float angle, const float3 axis); // assumes axis is normalized
CMatrix44f& RotateEulerXYZ(const float3 angles); // executes Rotate{X,Y,Z}
CMatrix44f& RotateEulerYXZ(const float3 angles); // executes Rotate{Y,X,Z}
CMatrix44f& RotateEulerZXY(const float3 angles); // executes Rotate{Z,X,Y}
CMatrix44f& RotateEulerZYX(const float3 angles); // executes Rotate{Z,Y,X}
CMatrix44f& Translate(const float x, const float y, const float z);
CMatrix44f& Translate(const float3 pos) { return Translate(pos.x, pos.y, pos.z); }
CMatrix44f& Scale(const float3 scales);
void SetPos(const float3 pos) { m[12] = pos.x; m[13] = pos.y; m[14] = pos.z; }
void SetX (const float3 dir) { m[ 0] = dir.x; m[ 1] = dir.y; m[ 2] = dir.z; }
void SetY (const float3 dir) { m[ 4] = dir.x; m[ 5] = dir.y; m[ 6] = dir.z; }
void SetZ (const float3 dir) { m[ 8] = dir.x; m[ 9] = dir.y; m[10] = dir.z; }
float3& GetPos() { return col[3]; }
const float3& GetPos() const { return col[3]; }
const float3& GetX() const { return col[0]; }
const float3& GetY() const { return col[1]; }
const float3& GetZ() const { return col[2]; }
float3 GetEulerAnglesLftHand(float eps = 0.01f /*std::numeric_limits<float>::epsilon()*/) const;
float3 GetEulerAnglesRgtHand(float eps = 0.01f /*std::numeric_limits<float>::epsilon()*/) const;
inline void operator *= (const float a) {
for (size_t i = 0; i < 16; i += 4) {
m[i + 0] *= a;
m[i + 1] *= a;
m[i + 2] *= a;
m[i + 3] *= a;
}
}
CMatrix44f& Transpose();
/// general matrix inversion
bool InvertInPlace();
CMatrix44f Invert(bool* status = nullptr) const;
/// affine matrix inversion
CMatrix44f& InvertAffineInPlace();
CMatrix44f InvertAffine() const;
/// point/vector multiply
float3 operator* (const float3 v) const { return ((*this) * float4(v.x, v.y, v.z, 1.0f)); }
float4 operator* (const float4 v) const; // M*p (w=1) or M*v (w=0)
float3 Mul(const float3 v) const { return ((*this) * v); }
float4 Mul(const float4 v) const { return ((*this) * v); }
/// matrix multiply
CMatrix44f operator * (const CMatrix44f& mat) const;
CMatrix44f& operator >>= (const CMatrix44f& mat);
CMatrix44f& operator <<= (const CMatrix44f& mat);
CMatrix44f& operator *= (const CMatrix44f& mat) { return ((*this) <<= mat); }
// matrix addition
CMatrix44f& operator += (const CMatrix44f& mat) { return ((*this) = (*this) + mat); }
CMatrix44f operator + (const CMatrix44f& mat) const {
CMatrix44f r;
for (size_t i = 0; i < 16; i += 4) {
r[i + 0] = m[i + 0] + mat[i + 0];
r[i + 1] = m[i + 1] + mat[i + 1];
r[i + 2] = m[i + 2] + mat[i + 2];
r[i + 3] = m[i + 3] + mat[i + 3];
}
return r;
}
float& operator [] (int a) { return m[a]; }
float operator [] (int a) const { return m[a]; }
/// Allows implicit conversion to float* (for passing to gl functions)
operator const float* () const { return m; }
operator float* () { return m; }
enum {
ANGLE_P = 0,
ANGLE_Y = 1,
ANGLE_R = 2,
};
public:
/// OpenGL ordered (ie. column-major)
union {
float m[16];
float md[4][4]; // WARNING: it still is column-major, means md[j][i]!!!
float4 col[4];
};
};
// Templates for simple 2D/3D matrixes that behave
// pretty much like statically allocated matrixes,
// but can also be casted to and used as pointers.
template<class T>
T **newmat2(int x, int y) {
T *mat2 = new T[x*y], **mat = new T *[x];
for (int i = 0; i < x; ++i)
mat[i] = mat2 + i*y;
return mat;
}
template<class T>
T ***newmat3(int x, int y, int z) {
T *mat3=new T[x*y*z], **mat2=new T *[x*y], ***mat=new T **[x];
for (int i = 0; i < x; ++i) {
for(int j = 0; j < y; ++j)
mat2[i*y+j] = mat3 + (i*y+j)*z;
mat[i] = mat2 + i*y;
}
return mat;
}
template<class T>
void delmat2(T** mat) {
delete [] *mat;
delete [] mat;
}
template<class T>
void delmat3(T*** mat) {
delete [] **mat;
delete [] *mat;
delete [] mat;
}
#endif /* MATRIX44F_H */
|