1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#ifdef THREADPOOL
#include "ThreadPool.h"
#include "System/Exceptions.h"
#include "System/myMath.h"
#if (!defined(UNITSYNC) && !defined(UNIT_TEST))
#include "System/OffscreenGLContext.h"
#endif
#include "System/TimeProfiler.h"
#include "System/StringUtil.h"
#ifndef UNIT_TEST
#include "System/Config/ConfigHandler.h"
#endif
#include "System/Log/ILog.h"
#include "System/Platform/Threading.h"
#include "System/Threading/SpringThreading.h"
#ifdef likely
#undef likely
#undef unlikely
#endif
#include <utility>
#include <functional>
#define USE_TASK_STATS_TRACKING
// not in mingwlibs
// #define USE_BOOST_LOCKFREE_QUEUE
#ifdef USE_BOOST_LOCKFREE_QUEUE
#include <boost/lockfree/queue.hpp>
#else
#include "System/ConcurrentQueue.h"
#endif
#ifndef UNIT_TEST
CONFIG(int, WorkerThreadCount).defaultValue(-1).safemodeValue(0).minimumValue(-1).description("Number of workers (including the main thread!) used by ThreadPool.");
#endif
struct ThreadStats {
uint64_t numTasksRun;
uint64_t sumExecTime;
uint64_t minExecTime;
uint64_t maxExecTime;
uint64_t sumWaitTime;
uint64_t minWaitTime;
uint64_t maxWaitTime;
};
// external background threads which are only joined on exit
static std::vector< spring::thread > extThreads;
static std::vector< std::future<void> > extFutures;
// global [idx = 0] and smaller per-thread [idx > 0] queues; the latter are
// for tasks that want to execute on specific threads, e.g. parallel_reduce
// note: std::shared_ptr<T> can not be made atomic, queues must store T*'s
#ifdef USE_BOOST_LOCKFREE_QUEUE
static std::array<boost::lockfree::queue<ITaskGroup*>, ThreadPool::MAX_THREADS> taskQueues[2];
#else
static std::array<moodycamel::ConcurrentQueue<ITaskGroup*>, ThreadPool::MAX_THREADS> taskQueues[2];
#endif
static std::vector<void*> workerThreads[2];
static std::array<bool, ThreadPool::MAX_THREADS> exitFlags;
static std::array<ThreadStats, ThreadPool::MAX_THREADS> threadStats[2];
static spring::signal newTasksSignal[2];
static _threadlocal int threadnum(0);
#ifndef UNITSYNC
// if enabled, allows OpenGL calls from ThreadPool tasks
// so certain logic (e.g. loading models) can be written
// without forcing GL code to run within the main thread
// this is highly experimental, use at own risk
static bool glThreadSupport = false;
#endif
std::atomic_uint ITaskGroup::lastId(0);
namespace ThreadPool {
int GetThreadNum() { return threadnum; }
static void SetThreadNum(const int idx) { threadnum = idx; }
static int GetConfigNumWorkers() {
#ifndef UNIT_TEST
return configHandler->GetInt("WorkerThreadCount");
#else
return -1;
#endif
}
static int GetDefaultNumWorkers() {
const int maxNumThreads = GetMaxThreads(); // min(MAX_THREADS, cpuCores)
const int cfgNumWorkers = GetConfigNumWorkers();
// for latency reasons our worker threads yield rarely (busy-looping)
// so we always leave 1 core free for our other threads, drivers & OS
// if the user has not set WorkerThreadCount
if (cfgNumWorkers < 0) {
if (maxNumThreads == 2)
return maxNumThreads;
if (maxNumThreads < 6)
return (maxNumThreads - 1);
return (maxNumThreads / 2);
}
if (cfgNumWorkers > maxNumThreads) {
LOG_L(L_WARNING, "[ThreadPool::%s] workers set to %i, but there are just %i cores!", __func__, cfgNumWorkers, maxNumThreads);
return maxNumThreads;
}
return cfgNumWorkers;
}
// FIXME: mutex/atomic?
// NOTE: +1 because we also count the main thread, workers start at 1
int GetNumThreads() { return (workerThreads[false].size() + 1); }
int GetMaxThreads() { return std::min(MAX_THREADS, Threading::GetPhysicalCpuCores()); }
bool HasThreads() { return !workerThreads[false].empty(); }
static bool DoTask(int tid, bool async)
{
#ifndef UNIT_TEST
SCOPED_MT_TIMER("::ThreadWorkers (accumulated)");
#endif
ITaskGroup* tg = nullptr;
// any external thread calling WaitForFinished will have
// id=0 and *only* processes tasks from the global queue
for (int idx = 0; idx <= tid; idx += std::max(tid, 1)) {
auto& queue = taskQueues[async][idx];
#ifdef USE_BOOST_LOCKFREE_QUEUE
if (queue.pop(tg)) {
#else
if (queue.try_dequeue(tg)) {
#endif
// inform other workers when there is global work to do
// waking is an expensive kernel-syscall, so better shift this
// cost to the workers too (the main thread only wakes when ALL
// workers are sleeping)
if (idx == 0)
NotifyWorkerThreads(true, async);
assert(!async || tg->IsAsyncTask());
#ifdef USE_TASK_STATS_TRACKING
const uint64_t wdt = tg->GetDeltaTime(spring_now());
const uint64_t edt = tg->ExecuteLoop(tid, false);
threadStats[async][tid].numTasksRun += 1;
threadStats[async][tid].sumExecTime += edt;
threadStats[async][tid].sumWaitTime += wdt;
threadStats[async][tid].minExecTime = std::min(threadStats[async][tid].minExecTime, edt);
threadStats[async][tid].maxExecTime = std::max(threadStats[async][tid].maxExecTime, edt);
threadStats[async][tid].minWaitTime = std::min(threadStats[async][tid].minWaitTime, wdt);
threadStats[async][tid].maxWaitTime = std::max(threadStats[async][tid].maxWaitTime, wdt);
#else
tg->ExecuteLoop(tid, false);
#endif
}
#ifdef USE_BOOST_LOCKFREE_QUEUE
while (queue.pop(tg)) {
#else
while (queue.try_dequeue(tg)) {
#endif
assert(!async || tg->IsAsyncTask());
#ifdef USE_TASK_STATS_TRACKING
const uint64_t wdt = tg->GetDeltaTime(spring_now());
const uint64_t edt = tg->ExecuteLoop(tid, false);
threadStats[async][tid].numTasksRun += 1;
threadStats[async][tid].sumExecTime += edt;
threadStats[async][tid].sumWaitTime += wdt;
threadStats[async][tid].minExecTime = std::min(threadStats[async][tid].minExecTime, edt);
threadStats[async][tid].maxExecTime = std::max(threadStats[async][tid].maxExecTime, edt);
threadStats[async][tid].minWaitTime = std::min(threadStats[async][tid].minWaitTime, wdt);
threadStats[async][tid].maxWaitTime = std::max(threadStats[async][tid].maxWaitTime, wdt);
#else
tg->ExecuteLoop(tid, false);
#endif
}
}
// if true, queue contained at least one element
return (tg != nullptr);
}
__FORCE_ALIGN_STACK__
static void WorkerLoop(int tid, bool async)
{
assert(tid != 0);
SetThreadNum(tid);
#ifndef UNIT_TEST
Threading::SetThreadName(IntToString(tid, "worker%i"));
#endif
// make first worker spin a while before sleeping/waiting on the thread signal
// this increases the chance that at least one worker is awake when a new task
// is inserted, which can then take over the job of waking up sleeping workers
// (see NotifyWorkerThreads)
// NOTE: the spin-time has to be *short* to avoid biasing thread 1's workload
const auto ourSpinTime = spring_time::fromMicroSecs(30 * (tid == 1));
const auto maxSleepTime = spring_time::fromMilliSecs(30);
while (!exitFlags[tid]) {
const auto spinlockEnd = spring_now() + ourSpinTime;
auto sleepTime = spring_time::fromMicroSecs(1);
while (!DoTask(tid, async) && !exitFlags[tid]) {
if (spring_now() < spinlockEnd)
continue;
newTasksSignal[async].wait_for(sleepTime = std::min(sleepTime * 1.25f, maxSleepTime));
}
}
}
void WaitForFinished(std::shared_ptr<ITaskGroup>&& taskGroup)
{
// can be any worker-thread (for_mt inside another for_mt, etc)
const int tid = GetThreadNum();
{
#ifndef UNIT_TEST
SCOPED_MT_TIMER("::ThreadWorkers (accumulated)");
#endif
assert(!taskGroup->IsAsyncTask());
assert(!taskGroup->SelfDelete());
taskGroup->ExecuteLoop(tid, true);
}
// NOTE:
// it is possible for the task-group to have been completed
// entirely by the loop above, before any worker thread has
// even had a chance to pop it from the queue (so returning
// under that condition could cause the group to be deleted
// or reassigned prematurely) --> wait
if (taskGroup->IsFinished()) {
while (taskGroup->IsInJobQueue()) {
DoTask(tid, false);
}
taskGroup->ResetState(false, taskGroup->IsInTaskPool(), false);
return;
}
// task hasn't completed yet, use waiting time to execute other tasks
NotifyWorkerThreads(true, false);
do {
const auto spinlockEnd = spring_now() + spring_time::fromMilliSecs(500);
while (!DoTask(tid, false) && !taskGroup->IsFinished() && !exitFlags[tid]) {
if (spring_now() < spinlockEnd)
continue;
// avoid a hang if the task is still not finished
NotifyWorkerThreads(true, false);
break;
}
} while (!taskGroup->IsFinished() && !exitFlags[tid]);
while (taskGroup->IsInJobQueue()) {
DoTask(tid, false);
}
taskGroup->ResetState(false, taskGroup->IsInTaskPool(), false);
}
// WARNING:
// leaking the raw pointer *forces* caller to WaitForFinished
// otherwise task might get deleted while its pointer is still
// in the queue
void PushTaskGroup(std::shared_ptr<ITaskGroup>&& taskGroup) { PushTaskGroup(taskGroup.get()); }
void PushTaskGroup(ITaskGroup* taskGroup)
{
auto& queue = taskQueues[ taskGroup->IsAsyncTask() ][ taskGroup->WantedThread() ];
#if 0
// fake single-task group, handled by WaitForFinished to
// avoid a (delete) race-condition between it and DoTask
if (taskGroup->RemainingTasks() == 1 && !taskGroup->IsAsyncTask())
return;
#endif
taskGroup->SetTimeStamp(spring_now());
#ifdef USE_BOOST_LOCKFREE_QUEUE
while (!queue.push(taskGroup));
#else
while (!queue.enqueue(taskGroup));
#endif
#if 1
// AsyncTask's do not care about wakeup-latency as much
if (taskGroup->IsAsyncTask())
return;
NotifyWorkerThreads(false, false);
#else
NotifyWorkerThreads(false, taskGroup->IsAsyncTask());
#endif
}
void NotifyWorkerThreads(bool force, bool async)
{
// OPTIMIZATION
// if !force then only wake up threads when _all_ are sleeping
// this is an optimization; waking up other threads is a kernel
// syscall that costs a lot of time (up to 1000ms!) so we prefer
// not to block the thread that called PushTaskGroup and instead
// let the worker threads themselves inform each other
newTasksSignal[async].notify_all((GetNumThreads() - 1) * (1 - force));
}
static void SpawnThreads(int wantedNumThreads, int curNumThreads)
{
#ifndef UNITSYNC
if (glThreadSupport) {
try {
for (int i = curNumThreads; i < wantedNumThreads; ++i) {
exitFlags[i] = false;
workerThreads[false].push_back(new COffscreenGLThread(std::bind(&WorkerLoop, i, false)));
workerThreads[ true].push_back(new COffscreenGLThread(std::bind(&WorkerLoop, i, true)));
}
} catch (const opengl_error& gle) {
// shared gl context creation failed
ThreadPool::SetThreadCount(0);
glThreadSupport = false;
curNumThreads = ThreadPool::GetNumThreads();
}
} else
#endif
{
for (int i = curNumThreads; i < wantedNumThreads; ++i) {
exitFlags[i] = false;
workerThreads[false].push_back(new spring::thread(std::bind(&WorkerLoop, i, false)));
workerThreads[ true].push_back(new spring::thread(std::bind(&WorkerLoop, i, true)));
}
}
}
static void KillThreads(int wantedNumThreads, int curNumThreads)
{
for (int i = curNumThreads - 1; i >= wantedNumThreads && i > 0; --i) {
exitFlags[i] = true;
}
NotifyWorkerThreads(true, false);
for (int i = curNumThreads - 1; i >= wantedNumThreads && i > 0; --i) {
assert(!workerThreads[false].empty());
assert(!workerThreads[ true].empty());
#ifndef UNITSYNC
if (glThreadSupport) {
{ auto th = reinterpret_cast<COffscreenGLThread*>(workerThreads[false].back()); th->join(); delete th; }
{ auto th = reinterpret_cast<COffscreenGLThread*>(workerThreads[ true].back()); th->join(); delete th; }
} else
#endif
{
{ auto th = reinterpret_cast<spring::thread*>(workerThreads[false].back()); th->join(); delete th; }
{ auto th = reinterpret_cast<spring::thread*>(workerThreads[ true].back()); th->join(); delete th; }
}
workerThreads[false].pop_back();
workerThreads[ true].pop_back();
}
// play it safe
for (int i = curNumThreads - 1; i >= wantedNumThreads && i > 0; --i) {
ITaskGroup* tg = nullptr;
#ifdef USE_BOOST_LOCKFREE_QUEUE
while (taskQueues[false][i].pop(tg));
while (taskQueues[ true][i].pop(tg));
#else
while (taskQueues[false][i].try_dequeue(tg));
while (taskQueues[ true][i].try_dequeue(tg));
#endif
}
assert((wantedNumThreads != 0) || workerThreads[false].empty());
}
static std::uint32_t FindWorkerThreadCore(std::int32_t index, std::uint32_t availCores, std::uint32_t avoidCores)
{
// find an unused core for worker-thread <index>
const auto FindCore = [&index](std::uint32_t targetCores) {
std::uint32_t workerCore = 1;
std::int32_t n = index;
while ((workerCore != 0) && !(workerCore & targetCores))
workerCore <<= 1;
// select n'th bit in targetCores
// counts down because hyper-thread cores are appended to the end
// and we prefer those for our worker threads (physical cores are
// preferred for task specific threads)
while (n--)
do workerCore <<= 1; while ((workerCore != 0) && !(workerCore & targetCores));
return workerCore;
};
const std::uint32_t threadAvailCore = FindCore(availCores);
const std::uint32_t threadAvoidCore = FindCore(avoidCores);
if (threadAvailCore != 0)
return threadAvailCore;
// select one of the main-thread cores if no others are available
if (threadAvoidCore != 0)
return threadAvoidCore;
// fallback; use all
return (~0u);
}
void SetThreadCount(int wantedNumThreads)
{
const int curNumThreads = GetNumThreads(); // includes main
const int wtdNumThreads = Clamp(wantedNumThreads, 1, GetMaxThreads());
const char* fmts[4] = {
"[ThreadPool::%s][1] wanted=%d current=%d maximum=%d (init=%d)",
"[ThreadPool::%s][2] workers=%lu",
"\t[async=%d] threads=%d tasks=%lu {sum,avg}{exec,wait}time={{%.3f, %.3f}, {%.3f, %.3f}}ms",
"\t\tthread=%d tasks=%lu {sum,min,max,avg}{exec,wait}time={{%.3f, %.3f, %.3f, %.3f}, {%.3f, %.3f, %.3f, %.3f}}ms",
};
// total number of tasks executed by pool; total time spent in DoTask
uint64_t pNumTasksRun [2] = {0lu, 0lu};
uint64_t pSumExecTimes[2] = {0lu, 0lu};
uint64_t pSumWaitTimes[2] = {0lu, 0lu};
LOG(fmts[0], __func__, wantedNumThreads, curNumThreads, GetMaxThreads(), workerThreads[false].empty());
if (workerThreads[false].empty()) {
assert(workerThreads[true].empty());
#ifdef USE_BOOST_LOCKFREE_QUEUE
taskQueues[false][0].reserve(1024);
taskQueues[ true][0].reserve(1024);
#endif
#ifdef USE_TASK_STATS_TRACKING
for (bool async: {false, true}) {
for (int i = 0; i < MAX_THREADS; i++) {
threadStats[async][i].numTasksRun = std::numeric_limits<uint64_t>::min();
threadStats[async][i].sumExecTime = std::numeric_limits<uint64_t>::min();
threadStats[async][i].minExecTime = std::numeric_limits<uint64_t>::max();
threadStats[async][i].maxExecTime = std::numeric_limits<uint64_t>::min();
threadStats[async][i].sumWaitTime = std::numeric_limits<uint64_t>::min();
threadStats[async][i].minWaitTime = std::numeric_limits<uint64_t>::max();
threadStats[async][i].maxWaitTime = std::numeric_limits<uint64_t>::min();
}
}
#endif
}
if (curNumThreads < wtdNumThreads) {
SpawnThreads(wtdNumThreads, curNumThreads);
} else {
KillThreads(wtdNumThreads, curNumThreads);
}
#ifdef USE_TASK_STATS_TRACKING
if (workerThreads[false].empty()) {
assert(workerThreads[true].empty());
for (bool async: {false, true}) {
for (int i = 0; i < curNumThreads; i++) {
pNumTasksRun [async] += threadStats[async][i].numTasksRun;
pSumExecTimes[async] += threadStats[async][i].sumExecTime;
pSumWaitTimes[async] += threadStats[async][i].sumWaitTime;
}
}
for (bool async: {false, true}) {
const float pSumExecTime = pSumExecTimes[async] * 1e-6f;
const float pSumWaitTime = pSumWaitTimes[async] * 1e-6f;
const float pAvgExecTime = (pSumExecTimes[async] * 1e-6f) / std::max(pNumTasksRun[async], uint64_t(1));
const float pAvgWaitTime = (pSumWaitTimes[async] * 1e-6f) / std::max(pNumTasksRun[async], uint64_t(1));
LOG(fmts[2], async, curNumThreads, pNumTasksRun[async], pSumExecTime, pAvgExecTime, pSumWaitTime, pAvgWaitTime);
for (int i = 0; i < curNumThreads; i++) {
const ThreadStats& ts = threadStats[async][i];
if (ts.numTasksRun == 0)
continue;
const float tSumExecTime = ts.sumExecTime * 1e-6f; // ms
const float tSumWaitTime = ts.sumWaitTime * 1e-6f; // ms
const float tMinExecTime = ts.minExecTime * 1e-6f; // ms
const float tMinWaitTime = ts.minWaitTime * 1e-6f; // ms
const float tMaxExecTime = ts.maxExecTime * 1e-6f; // ms
const float tMaxWaitTime = ts.maxWaitTime * 1e-6f; // ms
const float tAvgExecTime = tSumExecTime / std::max(ts.numTasksRun, uint64_t(1));
const float tAvgWaitTime = tSumWaitTime / std::max(ts.numTasksRun, uint64_t(1));
LOG(fmts[3], i, ts.numTasksRun, tSumExecTime, tMinExecTime, tMaxExecTime, tAvgExecTime, tSumWaitTime, tMinWaitTime, tMaxWaitTime, tAvgWaitTime);
}
}
}
#endif
LOG(fmts[1], __func__, workerThreads[false].size());
}
void SetMaximumThreadCount()
{
if (workerThreads[false].empty()) {
workerThreads[false].reserve(MAX_THREADS);
workerThreads[ true].reserve(MAX_THREADS);
// NOTE:
// do *not* remove, this makes sure the profiler instance
// exists before any thread creates a timer that accesses
// it on destruction
#ifndef UNIT_TEST
profiler.ResetState();
#endif
}
if (GetConfigNumWorkers() <= 0)
return;
SetThreadCount(GetMaxThreads());
}
void SetDefaultThreadCount()
{
std::uint32_t systemCores = Threading::GetAvailableCoresMask();
std::uint32_t mainAffinity = systemCores;
#ifndef UNIT_TEST
mainAffinity &= configHandler->GetUnsigned("SetCoreAffinity");
#endif
std::uint32_t workerAvailCores = systemCores & ~mainAffinity;
SetThreadCount(GetDefaultNumWorkers());
{
// parallel_reduce now folds over shared_ptrs to futures
// const auto ReduceFunc = [](std::uint32_t a, std::future<std::uint32_t>& b) -> std::uint32_t { return (a | b.get()); };
const auto ReduceFunc = [](std::uint32_t a, std::shared_ptr< std::future<std::uint32_t> >& b) -> std::uint32_t { return (a | (b.get())->get()); };
const auto AffinityFunc = [&]() -> std::uint32_t {
const int i = ThreadPool::GetThreadNum();
// 0 is the source thread, skip
if (i == 0)
return 0;
const std::uint32_t workerCore = FindWorkerThreadCore(i - 1, workerAvailCores, mainAffinity);
// const std::uint32_t workerCore = workerAvailCores;
Threading::SetAffinity(workerCore);
return workerCore;
};
const std::uint32_t poolCoreAffinity = parallel_reduce(AffinityFunc, ReduceFunc);
const std::uint32_t mainCoreAffinity = ~poolCoreAffinity;
if (mainAffinity == 0)
mainAffinity = systemCores;
Threading::SetAffinityHelper("Main", mainAffinity & mainCoreAffinity);
}
}
void AddExtJob(spring::thread&& t) {
for (auto& et: extThreads) {
if (et.joinable())
continue;
et = std::move(t);
return;
}
extThreads.emplace_back(std::move(t));
}
void AddExtJob(std::future<void>&& f) {
#ifndef WIN32
for (auto& ef: extFutures) {
// find a future whose (void) result is already available, without blocking
// FIXME: does not currently (august 2017) compile on Windows mingw buildbots
if (ef.wait_until(std::chrono::system_clock::now() + std::chrono::seconds(0)) != std::future_status::ready)
continue;
ef = std::move(f);
return;
}
#endif
extFutures.emplace_back(std::move(f));
}
static void JoinExtThreads() {
for (auto& t: extThreads) {
t.join();
}
extThreads.clear();
}
static void GetExtFutures() {
for (auto& f: extFutures) {
f.get();
}
extFutures.clear();
}
void ClearExtJobs() {
JoinExtThreads();
GetExtFutures();
}
}
#endif
|