1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <array>
#include "System/float3.h"
#include "System/float4.h"
#include "System/myMath.h"
#include "System/TimeProfiler.h"
#include "System/Log/ILog.h"
#include "System/Misc/SpringTime.h"
#define BOOST_TEST_MODULE Float3
#include <boost/test/unit_test.hpp>
BOOST_GLOBAL_FIXTURE(InitSpringTime);
static inline float randf() {
return rand() / float(RAND_MAX);
}
static inline float RandFloat(const float min, const float max) {
return min + (max - min) * randf();
}
static inline bool equals_legacy(const float3& f1, const float3& f2)
{
return math::fabs(f1.x - f2.x) <= float3::cmp_eps() * math::fabs(f1.x)
&& math::fabs(f1.y - f2.y) <= float3::cmp_eps() * math::fabs(f1.y)
&& math::fabs(f1.z - f2.z) <= float3::cmp_eps() * math::fabs(f1.z);
}
static inline bool equals_new(const float3& f1, const float3& f2)
{
return (epscmp(f1.x, f2.x, float3::cmp_eps()) && epscmp(f1.y, f2.y, float3::cmp_eps()) && epscmp(f1.z, f2.z, float3::cmp_eps()));
}
static inline bool epscmp2(const float& f) { return (f <= (float3::cmp_eps() * f)); }
static inline bool equals_distance(const float3& f1, const float3& f2)
{
return ((f1.x == f2.x) && (f1.y == f2.y) && (f1.z == f2.z))
|| epscmp2(f1.SqDistance(f2));
}
static inline bool equals_sse(const float3& f1, const float3& f2)
{
// same as equals_new() just with SSE
__m128 eq;
__m128 m1 = _mm_set_ps(f1[0], f1[1], f1[2], 0.f);
__m128 m2 = _mm_set_ps(f2[0], f2[1], f2[2], 0.f);
eq = _mm_cmpeq_ps(m1, m2);
if ((eq[0] != 0) && (eq[1] != 0) && (eq[2] != 0))
return true;
static const __m128 sign_mask = _mm_set1_ps(-0.f); // -0.f = 1 << 31
static const __m128 eps = _mm_set1_ps(float3::cmp_eps());
static const __m128 ones = _mm_set1_ps(1.f);
__m128 am1 = _mm_andnot_ps(sign_mask, m1);
__m128 am2 = _mm_andnot_ps(sign_mask, m2);
__m128 right = _mm_add_ps(am1, am2);
right = _mm_add_ps(right, ones);
right = _mm_mul_ps(right, eps);
__m128 left = _mm_sub_ps(m1, m2);
left = _mm_andnot_ps(sign_mask, left);
eq = _mm_cmple_ps(left, right);
return ((eq[0] != 0) && (eq[1] != 0) && (eq[2] != 0));
}
BOOST_AUTO_TEST_CASE( Float3 )
{
BOOST_CHECK_MESSAGE(offsetof(float3, x) == 0, "offsetof(float3, x) == 0");
BOOST_CHECK_MESSAGE(offsetof(float3, y) == sizeof(float), "offsetof(float3, y) == sizeof(float)");
BOOST_CHECK_MESSAGE(sizeof(float3) == 3 * sizeof(float), "sizeof(float3) == 3 * sizeof(float)");
}
BOOST_AUTO_TEST_CASE( Float34_comparison )
{
const float nearZero = float3::cmp_eps()*0.1f;
const float nearOne = 1.0f + nearZero;
const float big = 100000.0f;
const float nearBig = big + big*nearZero;
const float3 f3_Zero(ZeroVector);
const float3 f3_NearZero(nearZero, nearZero, nearZero);
const float3 f3_One(OnesVector);
const float3 f3_NearOne(nearOne, nearOne, nearOne);
const float3 f3_Big(big, big, big);
const float3 f3_NearBig(nearBig, nearBig, nearBig);
const float4 f4_Zero(ZeroVector, 0.0f);
const float4 f4_NearZero(nearZero, nearZero, nearZero, nearZero);
const float4 f4_One(OnesVector, 1.0f);
const float4 f4_NearOne(nearOne, nearOne, nearOne, nearOne);
const float4 f4_Big(big, big, big, big);
const float4 f4_NearBig(nearBig, nearBig, nearBig, nearBig);
BOOST_CHECK(f3_NearZero == f3_Zero);
BOOST_CHECK(f3_Zero == f3_NearZero);
BOOST_CHECK(f4_NearZero == f4_Zero);
BOOST_CHECK(f4_Zero == f4_NearZero);
BOOST_CHECK(f3_NearOne == f3_One);
BOOST_CHECK(f3_One == f3_NearOne);
BOOST_CHECK(f4_NearOne == f4_One);
BOOST_CHECK(f4_One == f4_NearOne);
BOOST_CHECK(f3_NearBig == f3_Big);
BOOST_CHECK(f3_Big == f3_NearBig);
BOOST_CHECK(f4_NearBig == f4_Big);
BOOST_CHECK(f4_Big == f4_NearBig);
}
BOOST_AUTO_TEST_CASE( Float34_comparison_Performance )
{
srand( 0 );
std::array<float3, 100> v;
for (float3& f: v) {
f.x = RandFloat(0.f, 5000.f);
f.y = RandFloat(0.f, 5000.f);
f.z = RandFloat(0.f, 5000.f);
}
auto w = v;
auto u = v;
for (int i=0; i<u.size(); ++i) {
if (i % 2 == 0)
u[i+1] = u[i];
}
const std::int64_t iterations = 100000000;
int b[5] = {false, false, false, false, false};
LOG("float3:");
{
ScopedOnceTimer foo(" float::operator==() ( 0% equality)");
for (auto j=iterations; j>0; --j) {
b[0] ^= (v[j % v.size()] == v[(j+1) % v.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() ( 50% equality)");
for (auto j=iterations; j>0; --j) {
b[0] ^= (u[j % u.size()] == u[(j+1) % u.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() (100% equality)");
for (auto j=iterations; j>0; --j) {
b[0] ^= (v[j % v.size()] == w[j % v.size()]) * j;
}
}
LOG("legacy:");
{
ScopedOnceTimer foo(" float::operator==() ( 0% equality)");
for (auto j=iterations; j>0; --j) {
b[1] ^= equals_legacy(v[j % v.size()], v[(j+1) % v.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() ( 50% equality)");
for (auto j=iterations; j>0; --j) {
b[1] ^= equals_legacy(u[j % u.size()], u[(j+1) % u.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() (100% equality)");
for (auto j=iterations; j>0; --j) {
b[1] ^= equals_legacy(v[j % v.size()], w[j % v.size()]) * j;
}
}
LOG("new (inlined):");
{
ScopedOnceTimer foo(" float::operator==() ( 0% equality)");
for (auto j=iterations; j>0; --j) {
b[2] ^= equals_new(v[j % v.size()], v[(j+1) % v.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() ( 50% equality)");
for (auto j=iterations; j>0; --j) {
b[2] ^= equals_new(u[j % u.size()], u[(j+1) % u.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() (100% equality)");
for (auto j=iterations; j>0; --j) {
b[2] ^= equals_new(v[j % v.size()], w[j % v.size()]) * j;
}
}
LOG("new (SSE impl):");
{
ScopedOnceTimer foo(" float::operator==() ( 0% equality)");
for (auto j=iterations; j>0; --j) {
b[3] ^= equals_sse(v[j % v.size()], v[(j+1) % v.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() ( 50% equality)");
for (auto j=iterations; j>0; --j) {
b[3] ^= equals_sse(u[j % u.size()], u[(j+1) % u.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() (100% equality)");
for (auto j=iterations; j>0; --j) {
b[3] ^= equals_sse(v[j % v.size()], w[j % v.size()]) * j;
}
}
LOG("distance:");
{
ScopedOnceTimer foo(" float::operator==() ( 0% equality)");
for (auto j=iterations; j>0; --j) {
b[4] ^= equals_distance(v[j % v.size()], v[(j+1) % v.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() ( 50% equality)");
for (auto j=iterations; j>0; --j) {
b[4] ^= equals_distance(u[j % u.size()], u[(j+1) % u.size()]) * j;
}
}
{
ScopedOnceTimer foo(" float::operator==() (100% equality)");
for (auto j=iterations; j>0; --j) {
b[4] ^= equals_distance(v[j % v.size()], w[j % v.size()]) * j;
}
}
BOOST_CHECK((b[0] == b[1]) && (b[2] == b[3]) && (b[1] == b[2]) && (b[3] == b[4]));
}
|