1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <algorithm>
#include <array>
#include "LosMap.h"
#include "LosHandler.h"
#include "Map/ReadMap.h"
#include "System/SpringMath.h"
#include "System/float3.h"
#include "System/Log/ILog.h"
#include "System/StringUtil.h"
#include "System/Threading/ThreadPool.h"
#ifdef USE_UNSYNCED_HEIGHTMAP
#include "Game/GlobalUnsynced.h" // for myAllyTeam
#endif
constexpr float LOS_BONUS_HEIGHT = 5.0f;
static std::array<std::vector<float>, ThreadPool::MAX_THREADS> RADIUS_ISQRT_TABLES;
static std::array<std::vector<float>, ThreadPool::MAX_THREADS> RAYCAST_ANGLE_TABLES;
static std::array<std::vector< char>, ThreadPool::MAX_THREADS> LOSRAY_SQUARE_TABLES; // visible squares per instance
static float isqrtTableLookup(unsigned r, int threadNum)
{
assert(r < RADIUS_ISQRT_TABLES[threadNum].size());
return RADIUS_ISQRT_TABLES[threadNum][r];
}
static void isqrtTableExpand(unsigned r, int threadNum)
{
auto& isqrtTable = RADIUS_ISQRT_TABLES[threadNum];
if (r < isqrtTable.size())
return;
if (isqrtTable.empty())
isqrtTable.reserve((r + 1) * 4);
for (unsigned i = isqrtTable.size(); i <= r; ++i) {
isqrtTable.push_back(math::isqrt(std::max(i, 1u)));
}
}
// Midpoint circle algorithm
// func() only get called for the lower top right octant.
// The others need to get by mirroring.
template<typename F>
void MidpointCircleAlgo(int radius, const F& func)
{
int x = radius;
int y = 0;
int decisionOver2 = 1 - x;
while (x >= y) {
func(x, y);
y++;
if (decisionOver2 <= 0) {
decisionOver2 += 2 * y + 1;
} else {
x--;
decisionOver2 += 2 * (y - x) + 1;
}
}
}
// Calls func(half_line_width, y) for each line of the filled circle.
template<typename F>
void MidpointCircleAlgoPerLine(int radius, const F& func)
{
int x = radius;
int y = 0;
int decisionOver2 = 1 - x;
while (x >= y) {
func(x, y);
if (y != 0)
func(x, -y);
if (decisionOver2 <= 0) {
y++;
decisionOver2 += 2 * y + 1;
} else {
if (x != y) {
func(y, x);
if (x != 0)
func(y, -x);
}
y++;
x--;
decisionOver2 += 2 * (y - x) + 1;
}
}
}
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
/// raycast precalculation helper
class CLosTableHelper
{
public:
typedef std::vector<int2> LosLine;
typedef std::vector<LosLine> LosTable;
// only generates table if not in cache
void GenerateForLosSize(size_t losSize);
const int2 GetLosTableRaySquare(size_t losSize, size_t rayIndex, size_t squareIdx) {
return losTables[losSize][rayIndex][squareIdx];
}
size_t GetLosTableRaySize(size_t losSize, size_t rayIndex) {
return losTables[losSize][rayIndex].size();
}
size_t GetLosTableSize(size_t losSize) {
return losTables[losSize].size();
}
private:
// [0] is the zero-radius table
// NOTE:
// do we even need a table for *every* possible radius?
// why not precalculate only the largest and subsample?
std::array<LosTable, MAX_UNIT_SENSOR_RADIUS + 1> losTables;
private:
static LosLine GetRay(int x, int y);
static LosTable GetLosRays(int radius);
static std::vector<int2> GetCircleSurface(const int radius);
static void AddMissing(LosTable& losRays, const std::vector<int2>& circlePoints, const int radius);
static void Debug(const LosTable& losRays, const std::vector<int2>& points, int radius);
};
static std::array<CLosTableHelper, ThreadPool::MAX_THREADS> losTableHelpers;
void CLosTableHelper::GenerateForLosSize(size_t losSize)
{
// guard against insane sight distances
assert(losSize < losTables.size());
if (losSize == 0)
return;
LosTable& table = losTables[losSize];
if (!table.empty())
return;
table = std::move(GetLosRays(losSize));
}
/**
* @brief Precalcs the rays for LineOfSight raytracing.
* In LoS we raytrace all squares in a radius if they are in view
* or obstructed by the heightmap. To do so we cast rays with the
* given radius to the LoS circle's surface. But cause those rays
* have no width, it happens that squares are missed inside of the
* circle. So these squares get their own rays with length < radius.
*
* Note: We only return the rays for the upper right sector, the
* others can be constructed by mirroring.
*/
CLosTableHelper::LosTable CLosTableHelper::GetLosRays(const int radius)
{
std::vector<int2> circlePoints = std::move(GetCircleSurface(radius));
LosTable losRays;
losRays.reserve(2 * circlePoints.size()); // twice cause of AddMissing()
for (const int2& p: circlePoints) {
losRays.emplace_back(std::move(GetRay(p.x, p.y)));
}
AddMissing(losRays, circlePoints, radius);
//if (radius == 30)
// Debug(losRays, circlePoints, radius);
losRays.shrink_to_fit();
return losRays;
}
/**
* @brief returns the surface coords of a 2d circle.
* Note, we only return the upper right part, the other 3 are generated via mirroring.
*/
std::vector<int2> CLosTableHelper::GetCircleSurface(const int radius)
{
// Midpoint circle algorithm
// returns the surface points of a circle (without duplicates)
std::vector<int2> circlePoints;
circlePoints.reserve(2 * radius);
MidpointCircleAlgo(radius, [&](int x, int y) {
// the upper 1/8th
circlePoints.emplace_back(x, y);
// the lower 1/8th, not added when:
// first check prevents 45deg duplicates
// second makes sure that only (0,radius) or (radius, 0) is generated (the other one is generated by mirroring later)
if (y != x && y != 0)
circlePoints.emplace_back(y, x);
});
assert(circlePoints.size() <= 2 * radius);
return circlePoints;
}
/**
* @brief Makes sure all squares in the radius are checked & adds rays to missing ones.
*/
void CLosTableHelper::AddMissing(LosTable& losRays, const std::vector<int2>& circlePoints, const int radius)
{
std::vector<char> image((radius + 1) * (radius + 1), 0);
const auto setpixel = [&](const int2 p) { image[p.y * (radius + 1) + p.x] = true; };
const auto getpixel = [&](const int2 p) { return image[p.y * (radius + 1) + p.x]; };
for (auto& line: losRays) {
for (int2& p: line) {
setpixel(p);
}
}
// start the check from 45deg bisector and go from there to 0deg & 90deg
// advantage is we only need to iterate once this time
// note: we iterate the list in reverse!
for (auto it = circlePoints.rbegin(); it != circlePoints.rend(); ++it) {
const int2& p = *it;
for (int a = p.x; a >= 1 && a >= p.y; --a) {
const int2 t1(a, p.y);
const int2 t2(p.y, a);
if (!getpixel(t1)) {
losRays.emplace_back(std::move(GetRay(t1.x, t1.y)));
for (int2& p_: losRays.back()) {
setpixel(p_);
}
}
// (0, radius) is a mirror of (radius, 0) so don't add it
if (!getpixel(t2) && t2 != int2(0, radius)) {
losRays.emplace_back(std::move(GetRay(t2.x, t2.y)));
for (int2& p_: losRays.back()) {
setpixel(p_);
}
}
}
}
}
/**
* @brief returns line coords of a ray with zero width to the coords (xf,yf)
*/
CLosTableHelper::LosLine CLosTableHelper::GetRay(int xf, int yf)
{
assert(xf >= 0);
assert(yf >= 0);
LosLine losline;
if (xf > yf) {
// horizontal line
const float m = (float) yf / (float) xf;
losline.reserve(xf);
for (int x = 1; x <= xf; x++) {
losline.emplace_back(x, Round(m*x));
}
} else {
// vertical line
const float m = (float) xf / (float) yf;
losline.reserve(yf);
for (int y = 1; y <= yf; y++) {
losline.emplace_back(Round(m*y), y);
}
}
assert(losline.back() == int2(xf,yf));
assert(!losline.empty());
return losline;
}
void CLosTableHelper::Debug(const LosTable& losRays, const std::vector<int2>& points, int radius)
{
// only one should be included (the other one is generated via mirroring)
assert(losRays.front().back() == int2(radius, 0));
assert(losRays.back().back() != int2(0, radius));
// check for duplicated/included rays
auto losRaysCopy = losRays;
for (const auto& ray1: losRaysCopy) {
if (ray1.empty())
continue;
for (auto& ray2: losRaysCopy) {
if (ray2.empty())
continue;
if (&ray1 == &ray2)
continue;
// check if ray2 is part of ray1
if (std::includes(ray1.begin(), ray1.end(), ray2.begin(), ray2.end())) {
// prepare for deletion
ray2.clear();
}
}
}
auto jt = std::remove_if(losRaysCopy.begin(), losRaysCopy.end(), [](LosLine& ray) { return ray.empty(); });
assert(jt == losRaysCopy.end());
// print the rays stats
LOG("------------------------------------");
// draw the sphere image
LOG("- sketch -");
std::vector<char> image((2*radius+1) * (2*radius+1), 0);
auto setpixel = [&](int2 p, char value = 1) {
image[p.y * (2*radius+1) + p.x] = value;
};
int2 midp = int2(radius, radius);
for (auto& line: losRays) {
for (int2 p: line) {
setpixel(midp + p, 127);
setpixel(midp - p, 127);
setpixel(midp + int2(p.y, -p.x), 127);
setpixel(midp + int2(-p.y, p.x), 127);
}
}
for (int2 p: points) {
setpixel(midp + p, 1);
setpixel(midp - p, 2);
setpixel(midp + int2(p.y, -p.x), 4);
setpixel(midp + int2(-p.y, p.x), 8);
}
for (int y = 0; y <= 2*radius; y++) {
std::string l;
for (int x = 0; x <= 2*radius; x++) {
if (image[y*(2*radius+1) + x] == 127) {
l += ".";
} else {
l += IntToString(image[y*(2*radius+1) + x]);
}
}
LOG("%s", l.c_str());
}
// points on the sphere surface
LOG("- surface points -");
std::string s;
for (int2 p: points) {
s += "(" + IntToString(p.x) + "," + IntToString(p.y) + ") ";
}
LOG("%s", s.c_str());
// rays to those points
LOG("- los rays -");
for (auto& line: losRays) {
std::string s;
for (int2 p: line) {
s += "(" + IntToString(p.x) + "," + IntToString(p.y) + ") ";
}
LOG("%s", s.c_str());
}
LOG_L(L_DEBUG, "------------------------------------");
}
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
/// CLosMap implementation
void CLosMap::AddCircle(SLosInstance* instance, int amount)
{
#ifdef USE_UNSYNCED_HEIGHTMAP
//only AddRaycast supports UnsyncedHeightMap updates
#endif
MidpointCircleAlgoPerLine(instance->radius, [&](int width, int y) {
const unsigned y_ = instance->basePos.y + y;
if (y_ < size.y) {
const unsigned sx = Clamp(instance->basePos.x - width, 0, size.x);
const unsigned ex = Clamp(instance->basePos.x + width + 1, 0, size.x);
for (unsigned x_ = sx; x_ < ex; ++x_) {
losmap[(y_ * size.x) + x_] += amount;
}
}
});
}
void CLosMap::AddRaycast(SLosInstance* instance, int amount)
{
const auto& losSquares = instance->squares;
if (losSquares.empty() || losSquares[0].length == SLosInstance::EMPTY_RLE.length)
return;
#ifdef USE_UNSYNCED_HEIGHTMAP
// inform ReadMap when squares enter LoS
const bool visibleInstanceSquares = (instance->allyteam >= 0 && (instance->allyteam == gu->myAllyTeam || gu->spectatingFullView));
const bool updateUnsyncedHeightMap = sendReadmapEvents && visibleInstanceSquares;
if ((amount > 0) && updateUnsyncedHeightMap) {
for (const SLosInstance::RLE rle: losSquares) {
for (int idx = rle.start, len = rle.length; len > 0; --len, ++idx) {
losmap[idx] += amount;
// skip if this los-square did not *enter* LOS
if (losmap[idx] != amount)
continue;
const int2 lm = IdxToCoord(idx, size.x);
const int2 p1 = (lm ) * LOS2HEIGHT;
const int2 p2 = (lm + int2(1, 1)) * LOS2HEIGHT;
const int2 p3 = {std::min(p2.x, mapDims.mapxm1), std::min(p2.y, mapDims.mapym1)};
readMap->UpdateLOS(SRectangle(p1.x, p1.y, p3.x, p3.y));
}
}
return;
}
#endif
for (const SLosInstance::RLE rle: losSquares) {
for (int idx = rle.start, len = rle.length; len > 0; --len, ++idx) {
losmap[idx] += amount;
}
}
}
void CLosMap::PrepareRaycast(SLosInstance* instance) const
{
if (!instance->squares.empty())
return;
LosAdd(instance);
if (!instance->squares.empty())
return;
instance->squares.push_back(SLosInstance::EMPTY_RLE);
}
#define MAP_SQUARE(pos) ((pos).y * size.x + (pos).x)
void CLosMap::LosAdd(SLosInstance* li) const
{
const auto MAP_SQUARE_FULLRES = [&](int2 pos) {
float2 fpos = pos;
fpos += 0.5f;
fpos /= float2(size);
int2 ipos = fpos * float2(mapDims.mapx, mapDims.mapy);
//assert(ipos.y * mapDims.mapx + ipos.x < (mapDims.mapx * mapDims.mapy));
return ipos.y * mapDims.mapx + ipos.x;
};
const SRectangle fullRect(0, 0, size.x, size.y);
const SRectangle safeRect(li->radius, li->radius, size.x - li->radius, size.y - li->radius);
if (fullRect.Inside(li->basePos) && li->baseHeight <= ctrHeightMap[MAP_SQUARE_FULLRES(li->basePos)])
return;
// add all squares within the instance's sight radius
if (safeRect.Inside(li->basePos)) {
// we aren't touching the map borders -> we don't need to check for the map boundaries
UnsafeLosAdd(li);
} else {
// we need to check each square if it's outside of the map boundaries
SafeLosAdd(li);
}
}
inline static constexpr size_t ToAngleMapIdx(const int2 p, const int radius)
{
// [-radius, +radius]^2 -> [0, +2*radius]^2 -> idx
return (p.y + radius) * (2 * radius + 1) + (p.x + radius);
}
inline void CastLos(
float* prvAngle,
float* maxAngle,
const int2& off,
std::vector<char>& losRaySquares,
std::vector<float>& raycastAngles,
int losRadius,
int threadNum
) {
const size_t oidx = ToAngleMapIdx(off, losRadius);
// angle to square is smaller than current max-angle, so not visible
if (raycastAngles[oidx] < *maxAngle) {
losRaySquares[oidx] = false;
return;
}
if (raycastAngles[oidx] < *prvAngle) {
const float invR = isqrtTableLookup(off.x * off.x + off.y * off.y, threadNum);
const float angle = *prvAngle - LOS_BONUS_HEIGHT * invR;
if (raycastAngles[oidx] < (*maxAngle = angle)) {
losRaySquares[oidx] = false;
return;
}
}
*prvAngle = raycastAngles[oidx];
}
void CLosMap::AddSquaresToInstance(SLosInstance* li, const std::vector<char>& losRaySquares) const
{
const int2 pos = li->basePos;
const int radius = li->radius;
const char* ptr = &losRaySquares[0];
auto& losSquares = li->squares;
for (int y = -radius; y <= radius; ++y) {
SLosInstance::RLE rle = {MAP_SQUARE(pos + int2(-radius, y)), 0};
for (int x = -radius; x <= radius; ++x) {
if (*(ptr++)) {
++rle.length;
} else {
if (rle.length > 0)
losSquares.push_back(rle);
rle.start += (rle.length + 1);
rle.length = 0;
}
}
if (rle.length > 0)
losSquares.push_back(rle);
}
}
void CLosMap::UnsafeLosAdd(SLosInstance* li) const
{
// How does it work?
// We spawn rays (those created by CLosTableHelper::GenerateForLosSize), and cast them
// on the heightmap. Meaning we compute the angle to the given squares and compare them
// with the highest cached one on that ray. When the new angle is higher the square is
// visible and gets added to the squares array.
//
// How does prevAng optimisation work?
// We don't really need to save every angle as the maximum, if we're going up a mountain
// we can just mark them true and continue until we reach the top.
// So now, only hilltops are cached in maxAng, and they're only cached when checking
// the square after the hilltop, since otherwise we can't know that the ascent ended.
const int threadNum = ThreadPool::GetThreadNum();
const int2 pos = li->basePos;
const int radius = li->radius;
const float losHeight = li->baseHeight;
CLosTableHelper& helper = losTableHelpers[threadNum];
std::vector<char>& losRaySquares = LOSRAY_SQUARE_TABLES[threadNum];
std::vector<float>& raycastAngles = RAYCAST_ANGLE_TABLES[threadNum];
helper.GenerateForLosSize(radius);
losRaySquares.clear();
losRaySquares.resize(Square((2 * radius) + 1), false);
raycastAngles.clear();
raycastAngles.resize(Square((2 * radius) + 1), -1e8);
isqrtTableExpand((radius + 1) * (radius + 1), threadNum);
// Optimization: precalculate all angles
// 1. Center squares are accessed much more often by more rays than those on the border.
// 2. The heightmap is much bigger than the circle, and won't fit into the L2/L3. So
// when we buffer the precalc in a vector just large enough for the processed data,
// we reduce the amount of cache misses.
MidpointCircleAlgoPerLine(radius, [&](int width, int y) {
const unsigned y_ = pos.y + y;
const unsigned sx = pos.x - width;
const unsigned ex = pos.x + width + 1;
const size_t oidx = ToAngleMapIdx(int2(sx - pos.x, y), radius);
float* raycastAnglesPtr = &raycastAngles[oidx];
char* losRaySquaresPtr = &losRaySquares[oidx];
int idx = MAP_SQUARE(int2(sx, y_));
for (unsigned x_ = sx; x_ < ex; ++x_) {
const int2 off(x_ - pos.x, y);
if (off == int2(0, 0)) {
++idx;
++raycastAnglesPtr;
++losRaySquaresPtr;
continue;
}
const float invR = isqrtTableLookup(off.x*off.x + off.y*off.y, threadNum);
const float dh = std::max(0.0f, mipHeightMap[idx++]) - losHeight;
*(raycastAnglesPtr++) = (dh + LOS_BONUS_HEIGHT) * invR;
*(losRaySquaresPtr++) = true;
}
});
// cast the rays
losRaySquares[ToAngleMapIdx(int2(0, 0), radius)] = true;
const size_t numRays = helper.GetLosTableSize(radius);
for (size_t i = 0; i < numRays; ++i) {
float maxAngles[4] = {-1e7, -1e7, -1e7, -1e7};
float prvAngles[4] = {-1e7, -1e7, -1e7, -1e7};
const size_t numSquares = helper.GetLosTableRaySize(radius, i);
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
CastLos(&prvAngles[0], &maxAngles[0], square , losRaySquares, raycastAngles, radius, threadNum);
CastLos(&prvAngles[1], &maxAngles[1], -square , losRaySquares, raycastAngles, radius, threadNum);
CastLos(&prvAngles[2], &maxAngles[2], int2( square.y, -square.x), losRaySquares, raycastAngles, radius, threadNum);
CastLos(&prvAngles[3], &maxAngles[3], int2(-square.y, square.x), losRaySquares, raycastAngles, radius, threadNum);
}
}
// translate visible square indices to map square idx + RLE
AddSquaresToInstance(li, losRaySquares);
}
void CLosMap::SafeLosAdd(SLosInstance* li) const
{
// see above
const int threadNum = ThreadPool::GetThreadNum();
const int2 pos = li->basePos;
const int radius = li->radius;
const float losHeight = li->baseHeight;
CLosTableHelper& helper = losTableHelpers[threadNum];
std::vector< char>& losRaySquares = LOSRAY_SQUARE_TABLES[threadNum];
std::vector<float>& raycastAngles = RAYCAST_ANGLE_TABLES[threadNum];
helper.GenerateForLosSize(radius);
losRaySquares.clear();
losRaySquares.resize(Square((2 * radius) + 1), false);
raycastAngles.clear();
raycastAngles.resize(Square((2 * radius) + 1), -1e8);
const SRectangle safeRect(0, 0, size.x, size.y);
isqrtTableExpand((radius + 1) * (radius + 1), threadNum);
// Optimization: precalc all angles
MidpointCircleAlgoPerLine(radius, [&](int width, int y) {
const unsigned y_ = pos.y + y;
if (y_ < size.y) {
const unsigned sx = Clamp(pos.x - width, 0, size.x);
const unsigned ex = Clamp(pos.x + width + 1, 0, size.x);
const size_t oidx = ToAngleMapIdx(int2(sx - pos.x, y), radius);
float* raycastAnglesPtr = &raycastAngles[oidx];
char* losRaySquaresPtr = &losRaySquares[oidx];
int idx = MAP_SQUARE(int2(sx, y_));
for (unsigned x_ = sx; x_ < ex; ++x_) {
const int2 off(x_ - pos.x, y);
if (off == int2(0, 0)) {
++idx;
++raycastAnglesPtr;
++losRaySquaresPtr;
continue;
}
const float invR = isqrtTableLookup(off.x*off.x + off.y*off.y, threadNum);
const float dh = std::max(0.0f, mipHeightMap[idx++]) - losHeight;
*(raycastAnglesPtr++) = (dh + LOS_BONUS_HEIGHT) * invR;
*(losRaySquaresPtr++) = true;
}
}
});
// Cast the Rays
const size_t numRays = helper.GetLosTableSize(radius);
if (safeRect.Inside(pos)) {
losRaySquares[ToAngleMapIdx(int2(0, 0), radius)] = true;
for (size_t i = 0; i < numRays; ++i) {
float maxAngles[4] = {-1e7, -1e7, -1e7, -1e7};
float prvAngles[4] = {-1e7, -1e7, -1e7, -1e7};
const size_t numSquares = helper.GetLosTableRaySize(radius, i);
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
if (!safeRect.Inside(pos + square))
break;
CastLos(&prvAngles[0], &maxAngles[0], square, losRaySquares, raycastAngles, radius, threadNum);
}
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
if (!safeRect.Inside(pos - square))
break;
CastLos(&prvAngles[1], &maxAngles[1], -square, losRaySquares, raycastAngles, radius, threadNum);
}
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
if (!safeRect.Inside(pos + int2(square.y, -square.x)))
break;
CastLos(&prvAngles[2], &maxAngles[2], int2(square.y, -square.x), losRaySquares, raycastAngles, radius, threadNum);
}
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
if (!safeRect.Inside(pos + int2(-square.y, square.x)))
break;
CastLos(&prvAngles[3], &maxAngles[3], int2(-square.y, square.x), losRaySquares, raycastAngles, radius, threadNum);
}
}
} else {
// emit position outside the map
for (size_t i = 0; i < numRays; ++i) {
float maxAngles[4] = {-1e7, -1e7, -1e7, -1e7};
float prvAngles[4] = {-1e7, -1e7, -1e7, -1e7};
const size_t numSquares = helper.GetLosTableRaySize(radius, i);
for (size_t n = 0; n < numSquares; n++) {
const int2 square = helper.GetLosTableRaySquare(radius, i, n);
if (safeRect.Inside(pos + square))
CastLos(&prvAngles[0], &maxAngles[0], square, losRaySquares, raycastAngles, radius, threadNum);
if (safeRect.Inside(pos - square))
CastLos(&prvAngles[1], &maxAngles[1], -square, losRaySquares, raycastAngles, radius, threadNum);
if (safeRect.Inside(pos + int2(square.y, -square.x)))
CastLos(&prvAngles[2], &maxAngles[2], int2(square.y, -square.x), losRaySquares, raycastAngles, radius, threadNum);
if (safeRect.Inside(pos + int2(-square.y, square.x)))
CastLos(&prvAngles[3], &maxAngles[3], int2(-square.y, square.x), losRaySquares, raycastAngles, radius, threadNum);
}
}
}
// translate visible square indices to map square idx + RLE
AddSquaresToInstance(li, losRaySquares);
}
|