1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "SpringTime.h"
#include "System/MainDefines.h"
#include "System/SpringMath.h"
#define FORCE_CHRONO_TIMERS
#include <chrono>
#include <atomic>
#if defined(USING_CREG) && !defined(UNIT_TEST)
#include "System/creg/Serializer.h"
//FIXME always use class even in non-debug! for creg!
CR_BIND(spring_time, )
CR_REG_METADATA(spring_time,(
CR_IGNORED(x),
CR_SERIALIZER(Serialize)
))
#endif
#if (defined(_WIN32) && !defined(FORCE_CHRONO_TIMERS))
#define USE_NATIVE_WINDOWS_CLOCK 1
#endif
#if USE_NATIVE_WINDOWS_CLOCK
#include <windows.h>
#endif
#ifdef _GLIBCXX_USE_SCHED_YIELD
#undef _GLIBCXX_USE_SCHED_YIELD
#endif
#define _GLIBCXX_USE_SCHED_YIELD // workaround a gcc <4.8 bug
#include "System/Threading/SpringThreading.h"
namespace this_thread { using namespace std::this_thread; }
namespace spring_clock {
static bool highResMode = false;
static bool timerInited = false;
void PushTickRate(bool b) {
assert(!timerInited);
highResMode = b;
timerInited = true;
#if USE_NATIVE_WINDOWS_CLOCK
// set the number of milliseconds between interrupts
// NOTE: THIS IS A GLOBAL OS SETTING, NOT PER PROCESS
// (should not matter for users, SDL 1.2 also sets it)
if (!highResMode) {
timeBeginPeriod(1);
}
#endif
}
void PopTickRate() {
assert(timerInited);
#if USE_NATIVE_WINDOWS_CLOCK
if (!highResMode) {
timeEndPeriod(1);
}
#endif
}
#if USE_NATIVE_WINDOWS_CLOCK
// QPC wants the LARGE_INTEGER's to be qword-aligned
__FORCE_ALIGN_STACK__
std::int64_t GetTicksNative() {
assert(timerInited);
if (highResMode) {
// NOTE:
// SDL 1.2 by default does not use QueryPerformanceCounter
// SDL 2.0 does (but code does not seem aware of the issues)
//
// QPC is an interrupt-independent (unlike timeGetTime & co)
// virtual timer that runs at a "fixed" frequency which is
// derived from hardware, but can be *severely* affected by
// thermal drift (heavy CPU load will change the precision!)
//
// QPC is an *interface* to either the TSC or the HPET or the
// ACPI timer, MS claims "it should not matter which processor
// is called" and setting thread affinity is only necessary in
// case QPC picks TSC (can happen if ACPI BIOS code is broken!)
//
// const DWORD_PTR oldMask = SetThreadAffinityMask(::GetCurrentThread(), 0);
// QueryPerformanceCounter(...);
// SetThreadAffinityMask(::GetCurrentThread(), oldMask);
//
// TSC is not invariant and completely unreliable on multi-core
// systems, but there exists an enhanced TSC on modern hardware
// which IS invariant (check CPUID 80000007H:EDX[8]) --> useful
// because reading TSC is much faster than an API call like QPC
//
// the range of possible frequencies is *HUGE* (KHz - GHz) and
// the hardware counter might only have a 32-bit register while
// QuadPart is a 64-bit integer --> no monotonicity guarantees!
// (especially in combination with TSC if thread switches cores)
LARGE_INTEGER tickFreq;
LARGE_INTEGER currTick;
if (!QueryPerformanceFrequency(&tickFreq))
return (FromMilliSecs<std::int64_t>(0));
QueryPerformanceCounter(&currTick);
// we want the raw tick (uncorrected for frequency)
// if clock ticks <freq> times per second, then the
// total number of {milli,micro,nano}seconds elapsed
// for any given tick is <tick> / <freq / resolution>
// eg. if freq = 15000Hz and tick = 5000, then
// secs = 5000 / (15000 / 1e0) = 0.3333333
// millisecs = 5000 / (15000 / 1e3) = 5000 / 15.000000 = 333
// microsecs = 5000 / (15000 / 1e6) = 5000 / 0.015000 = 333333
// nanosecs = 5000 / (15000 / 1e9) = 5000 / 0.000015 = 333333333
//
// currTick.QuadPart /= tickFreq.QuadPart;
if (tickFreq.QuadPart >= std::int64_t(double(1e9))) return (FromNanoSecs <std::uint64_t>(std::max(double(0.0), currTick.QuadPart / (tickFreq.QuadPart * double(1e-9)))));
if (tickFreq.QuadPart >= std::int64_t(double(1e6))) return (FromMicroSecs<std::uint64_t>(std::max(double(0.0), currTick.QuadPart / (tickFreq.QuadPart * double(1e-6)))));
if (tickFreq.QuadPart >= std::int64_t(double(1e3))) return (FromMilliSecs<std::uint64_t>(std::max(double(0.0), currTick.QuadPart / (tickFreq.QuadPart * double(1e-3)))));
return (FromSecs<std::int64_t>(std::max(0LL, currTick.QuadPart)));
} else {
// timeGetTime is affected by time{Begin,End}Period whereas
// GetTickCount is not ---> resolution of the former can be
// configured but not for a specific process (they both read
// from a shared counter that is updated by the system timer
// interrupt)
// it returns "the time elapsed since Windows was started"
// (which is usually not a large value so there is little
// risk of overflowing)
//
// note: there is a GetTickCount64 but no timeGetTime64
return (FromMilliSecs<std::uint32_t>(timeGetTime()));
}
}
#endif
std::int64_t GetTicks() {
assert(timerInited);
#if USE_NATIVE_WINDOWS_CLOCK
return (GetTicksNative());
#else
return (chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count());
#endif
}
const char* GetName() {
assert(timerInited);
#if USE_NATIVE_WINDOWS_CLOCK
if (highResMode) {
return "win32::QueryPerformanceCounter";
} else {
return "win32::TimeGetTime";
}
#else
return "std::chrono::high_resolution_clock";
#endif
}
}
std::int64_t spring_time::xs = 0;
static std::atomic_int avgThreadYieldTimeMicroSecs = {0};
static std::atomic_int avgThreadSleepTimeMicroSecs = {0};
static void thread_yield()
{
const spring_time t0 = spring_time::gettime();
this_thread::yield();
const spring_time t1 = spring_time::gettime();
const spring_time dt = t1 - t0;
if (t1 >= t0) {
// yes, it's not 100% thread correct, but it's okay when 1 of 1 million writes is dropped
int avg = avgThreadYieldTimeMicroSecs.load();
int newAvg = mix<float>(avg, dt.toMicroSecsf(), 0.1f);
avgThreadYieldTimeMicroSecs.store(newAvg);
}
}
void spring_time::sleep(bool forceThreadSleep)
{
if (forceThreadSleep) {
spring::this_thread::sleep_for(chrono::nanoseconds(toNanoSecsi()));
return;
}
// for very short time intervals use a yielding loop (yield is ~5x more accurate than sleep(), check the UnitTest)
if (toMicroSecsi() < (avgThreadSleepTimeMicroSecs + avgThreadYieldTimeMicroSecs * 5)) {
const spring_time s = gettime();
while ((gettime() - s) < *this)
thread_yield();
return;
}
// expected wakeup time
const spring_time t0 = gettime() + *this;
spring::this_thread::sleep_for(chrono::nanoseconds(toNanoSecsi()));
const spring_time t1 = gettime();
const spring_time dt = t1 - t0;
if (t1 >= t0) {
// yes, it's not 100% thread correct, but it's okay when 1 of 1 million writes is dropped
int avg = avgThreadSleepTimeMicroSecs.load();
int newAvg = mix<float>(avg, dt.toMicroSecsf(), 0.1f);
avgThreadSleepTimeMicroSecs.store(newAvg);
}
}
void spring_time::sleep_until()
{
auto tp = chrono::time_point<chrono::high_resolution_clock, chrono::nanoseconds>(chrono::nanoseconds(toNanoSecsi()));
this_thread::sleep_until(tp);
}
#if defined USING_CREG && !defined UNIT_TEST
void spring_time::Serialize(creg::ISerializer* s)
{
if (s->IsWriting()) {
int y = spring_tomsecs(*this - spring_gettime());
s->SerializeInt(&y, 4);
} else {
int y;
s->SerializeInt(&y, 4);
*this = *this + spring_msecs(y);
}
}
#endif
|