1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <array>
#include <cinttypes>
#include "lib/streflop/streflop_cond.h"
#include "LuaInclude.h"
#include "Lua/LuaAllocState.h"
#include "Lua/LuaHandle.h"
#include "Lua/LuaMemPool.h"
#include "System/GlobalRNG.h"
#include "System/SpringMath.h"
#if (ENABLE_USERSTATE_LOCKS != 0)
#include "System/UnorderedMap.hpp"
#include "System/Threading/SpringThreading.h"
#endif
#include "System/Log/ILog.h"
#include "System/Misc/SpringTime.h"
#if defined(DEDICATED) || defined(UNITSYNC) || defined(BUILDING_AI)
#error liblua should be built only once!
#endif
#ifndef __archBits__
#error __archBits__ undefined
#endif
///////////////////////////////////////////////////////////////////////////
// Custom (Unsynced) Random Number Generator
static CGlobalUnsyncedRNG lguRNG;
int spring_lua_unsynced_rand(lua_State* L) {
const lua_Number r = lguRNG.NextFloat();
switch (lua_gettop(L)) {
case 0: {
lua_pushnumber(L, r);
} break;
case 1: {
const int l = 1;
const int u = luaL_checkint(L, 1);
luaL_argcheck(L, 1 <= u, 1, "[spring_lua_unsynced_rand(1, upper)] empty interval");
lua_pushnumber(L, std::floor(r * (u - l + 1)) + l);
} break;
case 2: {
const int l = luaL_checkint(L, 1);
const int u = luaL_checkint(L, 2);
luaL_argcheck(L, l <= u, 2, "[spring_lua_unsynced_rand(lower, upper)] empty interval");
lua_pushnumber(L, std::floor(r * (u - l + 1)) + l);
} break;
default: {
return luaL_error(L, "[spring_lua_unsynced_rand] wrong number of arguments");
} break;
}
return 1;
}
int spring_lua_unsynced_srand(lua_State* L) {
if (L == nullptr) {
lguRNG.Seed(CGlobalUnsyncedRNG::rng_val_type(&L)); // startup
} else {
lguRNG.Seed(luaL_checkint(L, 1));
}
return 0;
}
///////////////////////////////////////////////////////////////////////////
// Custom Lua Mutexes
#if (ENABLE_USERSTATE_LOCKS != 0)
static spring::unsynced_map<lua_State*, bool> coroutines;
static spring::unsynced_map<lua_State*, spring::recursive_mutex*> mutexes;
static spring::recursive_mutex* GetLuaMutex(lua_State* L)
{
assert(mutexes[L] == nullptr);
return new spring::recursive_mutex();
}
#endif
void LuaCreateMutex(lua_State* L)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
luaContextData* lcd = GetLuaContextData(L);
if (lcd == nullptr)
return; // CLuaParser
assert(lcd != nullptr);
spring::recursive_mutex* mutex = GetLuaMutex(L);
lcd->luamutex = mutex;
mutexes[L] = mutex;
#endif
}
void LuaDestroyMutex(lua_State* L)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
if (GetLuaContextData(L) == nullptr)
return; // CLuaParser
assert(GetLuaContextData(L) != nullptr);
if (coroutines.find(L) != coroutines.end()) {
mutexes.erase(L);
coroutines.erase(L);
return;
}
lua_unlock(L);
assert(mutexes.find(L) != mutexes.end());
spring::recursive_mutex* mutex = GetLuaContextData(L)->luamutex;
assert(mutex);
delete mutex;
mutexes.erase(L);
//TODO erase all related coroutines too?
#endif
}
void LuaLinkMutex(lua_State* L_parent, lua_State* L_child)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
luaContextData* plcd = GetLuaContextData(L_parent);
luaContextData* clcd = GetLuaContextData(L_child);
assert(plcd != nullptr);
assert(clcd != nullptr);
assert(plcd == clcd);
coroutines[L_child] = true;
mutexes[L_child] = plcd->luamutex;
#endif
}
void LuaMutexLock(lua_State* L)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
if (GetLuaContextData(L) == nullptr)
return; // CLuaParser
spring::recursive_mutex* mutex = GetLuaContextData(L)->luamutex;
if (mutex->try_lock())
return;
mutex->lock();
#endif
}
void LuaMutexUnlock(lua_State* L)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
if (GetLuaContextData(L) == nullptr)
return; // CLuaParser
spring::recursive_mutex* mutex = GetLuaContextData(L)->luamutex;
mutex->unlock();
#endif
}
void LuaMutexYield(lua_State* L)
{
#if (ENABLE_USERSTATE_LOCKS != 0)
assert(GetLuaContextData(L));
/*mutexes[L]->unlock();
if (!mutexes[L]->try_lock()) {
// only yield if another thread is waiting for the mutex
spring::this_thread::yield();
mutexes[L]->lock();
}*/
static int count = 0;
if (count-- <= 0)
count = 30;
LuaMutexUnlock(L);
if (count == 30)
spring::this_thread::yield();
LuaMutexLock(L);
#endif
}
///////////////////////////////////////////////////////////////////////////
//
static const char* spring_lua_get_handle_name(const CLuaHandle* h) {
return ((h != nullptr)? (h->GetName()).c_str(): "<null>");
}
const char* spring_lua_get_handle_name(lua_State* L)
{
const luaContextData* lcd = GetLuaContextData(L);
if (lcd != nullptr)
return (spring_lua_get_handle_name(lcd->owner));
return "";
}
///////////////////////////////////////////////////////////////////////////
// Custom Memory Allocator
//
static constexpr const char* LUA_OOM_FMT_STR = "[%s][handle=%s][OOM] synced=%d {alloced,maximum}={" _STPF_ "," _STPF_ "}bytes\n";
static constexpr uint64_t MAX_ALLOC_BYTES[] = {
768u * (1024u * 1024u), // spring32
1536u * (1024u * 1024u), // spring64
};
// tracks allocations across all states
static SLuaAllocState gLuaAllocState = {{0}, {0}, {0}, {0}};
static SLuaAllocError gLuaAllocError = {};
void spring_lua_alloc_log_error(const luaContextData* lcd)
{
const CLuaHandle* lho = lcd->owner;
const char* lhn = spring_lua_get_handle_name(lho);
const char* fmt = LUA_OOM_FMT_STR;
SLuaAllocState& s = gLuaAllocState;
SLuaAllocError& e = gLuaAllocError;
if (e.msgPtr == nullptr)
e.msgPtr = &e.msgBuf[0];
// append to buffer until it fills up or get_error is called
e.msgPtr += SNPRINTF(e.msgPtr, sizeof(e.msgBuf) - (e.msgPtr - &e.msgBuf[0]), fmt, __func__, lhn, lcd->synced, s.allocedBytes.load(), MAX_ALLOC_BYTES[__archBits__ == 64]);
}
void* spring_lua_alloc(void* ud, void* ptr, size_t osize, size_t nsize)
{
luaContextData* lcd = static_cast<luaContextData*>(ud);
SLuaAllocState* las = &lcd->allocState;
LuaMemPool* lmp = lcd->memPool;
gLuaAllocState.allocedBytes -= osize;
gLuaAllocState.allocedBytes += nsize;
las->allocedBytes -= osize;
las->allocedBytes += nsize;
if (nsize == 0) {
// deallocation; must return NULL
lmp->Free(ptr, osize);
return nullptr;
}
if ((nsize > osize) && (gLuaAllocState.allocedBytes.load() > MAX_ALLOC_BYTES[__archBits__ == 64])) {
// (re)allocation
// better kill Lua than whole engine; instant desync if synced handle
// NOTE: this will trigger luaD_throw, which calls exit(EXIT_FAILURE)
spring_lua_alloc_log_error(lcd);
return nullptr;
}
// ptr is NULL if and only if osize is zero
// behaves like realloc when nsize!=0 and osize!=0 (ptr != NULL)
// behaves like malloc when nsize!=0 and osize==0 (ptr == NULL)
const spring_time t0 = spring_gettime();
void* mem = lmp->Realloc(ptr, nsize, osize);
const spring_time t1 = spring_gettime();
gLuaAllocState.numLuaAllocs += 1;
gLuaAllocState.luaAllocTime += (t1 - t0).toMicroSecsi();
las->numLuaAllocs += 1;
las->luaAllocTime += (t1 - t0).toMicroSecsi();
return mem;
}
void spring_lua_alloc_get_stats(SLuaAllocState* state)
{
state->allocedBytes.store(gLuaAllocState.allocedBytes.load());
state->numLuaAllocs.store(gLuaAllocState.numLuaAllocs.load());
state->luaAllocTime.store(gLuaAllocState.luaAllocTime.load());
#if (ENABLE_USERSTATE_LOCKS != 0)
state->numLuaStates.store(mutexes.size() - coroutines.size();
#else
state->numLuaStates.store(LuaMemPool::GetPoolCount());
#endif
}
bool spring_lua_alloc_skip_gc(float gcLoadMult)
{
// randomly skip a GC cycle with probability 1 - (weighted memory load ratio)
const float rawLoadRatio = float(gLuaAllocState.allocedBytes.load()) / float(MAX_ALLOC_BYTES[__archBits__ == 64]);
const float modLoadRatio = gcLoadMult * rawLoadRatio;
return (lguRNG.NextFloat() > modLoadRatio);
}
bool spring_lua_alloc_get_error(SLuaAllocError* error)
{
if (gLuaAllocError.msgBuf[0] == 0)
return false;
// copy and clear
std::memcpy(error->msgBuf, gLuaAllocError.msgBuf, sizeof(error->msgBuf));
std::memset(gLuaAllocError.msgBuf, 0, sizeof(gLuaAllocError.msgBuf));
gLuaAllocError.msgPtr = &gLuaAllocError.msgBuf[0];
return true;
}
void spring_lua_alloc_update_stats(int clearStatsFrame)
{
gLuaAllocState.numLuaAllocs.store(gLuaAllocState.numLuaAllocs * (1 - clearStatsFrame));
gLuaAllocState.luaAllocTime.store(gLuaAllocState.luaAllocTime * (1 - clearStatsFrame));
}
//////////////////////////////////////////////////////////
////// Custom synced float to string
//////////////////////////////////////////////////////////
#ifdef _WIN32
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wformat"
static inline int sprintf64(char* dst, std::int64_t x) { return sprintf(dst, "%I64d", x); }
#pragma GCC diagnostic pop
#else
static inline int sprintf64(char* dst, long int x) { return sprintf(dst, "%ld", x); }
static inline int sprintf64(char* dst, long long int x) { return sprintf(dst, "%lld", x); }
#endif
// excluding mantissa, a float has a rest int-precision of: 2^24 = 16,777,216
// int numbers in that range are 100% exact, and don't suffer float precision issues
// static constexpr int MAX_PRECISE_DIGITS_IN_FLOAT = std::numeric_limits<float>::digits10;
// static constexpr auto SPRING_FLOAT_MAX = std::numeric_limits<float>::max();
static constexpr auto SPRING_INT64_MAX = std::numeric_limits<std::int64_t>::max();
static constexpr std::array<double, 11> v = {
{1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10}
};
static constexpr inline double Pow10d(unsigned i)
{
return (i < v.size()) ? v[i] : std::pow(double(10), i);
}
static const inline int FastLog10(const float f)
{
assert(f != 0.0f); // log10(0) = -inf
if (f < 1.0f || f >= (SPRING_INT64_MAX >> 1))
return std::floor(std::log10(f));
const std::int64_t i = f;
std::int64_t n = 10;
int log10 = 0;
while (i >= n) {
++log10;
n *= 10;
}
return log10;
}
static constexpr inline int GetDigitsInStdNotation(const int log10)
{
// log10(0.01) = -2 (4 chars)
// log10(0.1) = -1 (3 chars)
// log10(1) = 0 (1 char)
// log10(10) = 1 (2 chars)
// log10(100) = 2 (3 chars)
return (log10 >= 0) ? (log10 + 1) : (-log10 + 2);
}
static inline int PrintIntPart(char* buf, float f, const bool roundingCarryBit = false)
{
#ifdef _WIN32
if (f < (std::numeric_limits<int>::max() - roundingCarryBit)) {
return sprintf(buf, "%d", int(f) + roundingCarryBit);
} else
#endif
if (f < (SPRING_INT64_MAX - roundingCarryBit))
return sprintf64(buf, std::int64_t(f) + roundingCarryBit); // much faster than printing a float!
return sprintf(buf, "%1.0f", f + roundingCarryBit);
}
static inline int PrintFractPart(char* buf, float f, int digits, int precision)
{
//XXX: Hacks, with streflop enabled we limit the FPU normally to 32bit float
// and doing any double math will use floats math then!
// But here we need the precision of doubles, so switch the FPU to it just
// for this casting.
//Note: We are still in synced code, so even these doubles need to sync!
// Also performance seems to be unaffected by switching the FPU mode.
streflop::streflop_init<streflop::Double>();
const char* old = buf;
char s[16];
assert(digits <= 15);
assert(digits <= std::numeric_limits<std::int64_t>::digits10);
const std::int64_t i = double(f) * Pow10d(digits) + 0.5;
const int len = sprintf64(s, i);
if (len < digits) {
memset(buf, '0', digits - len);
buf += digits - len;
}
memcpy(buf, s, len);
buf += len;
// removing trailing zeros
precision = std::max(1, precision);
while (buf[-1] == '0' && (buf - old) > precision)
--buf;
buf[0] = '\0';
streflop::streflop_init<streflop::Simple>();
assert((buf - old) >= 1);
return (buf - old);
}
static inline bool HandleRounding(float* fractF, int log10, int charsInStdNotation, int nDigits, int precision, bool useScientificNot)
{
// We handle here the case when rounding in the
// fract part carries into the integer part.
// We don't handle the fract rounding itself!
// fDigits excludes the dot when precision is < 0
const int iDigits = mix(1, charsInStdNotation, (!useScientificNot && log10 >= 0));
const int fDigits = mix(std::max(0, nDigits - (iDigits + 1)), precision, (precision >= 0));
// check fractional part against the rounding limit
// 1 -> 0.95 -%.1f-> 1.0
// 2 -> 0.995 -%.2f-> 1.00
// 3 -> 0.9995 -%.3f-> 1.000
const float roundLimit = 1.0f - 0.5f * std::pow(0.1f, fDigits);
if (*fractF >= roundLimit) {
*fractF = 0.0f;
return true;
}
return false;
}
void spring_lua_ftoa(float f, char* buf, int precision)
{
static constexpr int MAX_DIGITS = 10;
static_assert(MAX_DIGITS > 6, "must have enough room for at least 1.0e+23");
// get rid of integers
int x = f;
if (float(x) == f) {
sprintf(buf, "%i", x);
if (precision > 0) {
char* endBuf = strchr(buf, '\0');
*endBuf = '.';
++endBuf;
memset(endBuf, '0', precision);
endBuf[precision] = '\0';
}
return;
}
int nDigits = MAX_DIGITS;
if (std::signbit(f)) { // use signbit() cause < doesn't work with nans
f = -f;
buf[0] = '-';
++buf;
--nDigits;
}
if (std::isinf(f)) {
strcpy(buf, "inf");
return;
}
if (std::isnan(f)) {
strcpy(buf, "nan");
return;
}
int e10 = 0;
const int log10 = FastLog10(f);
const int charsInStdNotation = GetDigitsInStdNotation(log10);
if ((charsInStdNotation > nDigits) && (precision == -1)) {
nDigits -= 4; // space needed for "e+01"
f *= std::pow(10.0f, -(e10 = log10));
}
float truncF;
float fractF = std::modf(f, &truncF);
const bool useScientificNot = (e10 != 0);
const bool roundingCarryBit = HandleRounding(&fractF, log10, charsInStdNotation, nDigits, precision, useScientificNot);
int iDigits = PrintIntPart(buf, truncF, roundingCarryBit);
if (useScientificNot) {
assert(iDigits != 2 || fractF == 0.0f);
e10 += (iDigits == 2);
iDigits = mix(iDigits, 1, iDigits == 2);
assert(iDigits == 1);
}
nDigits -= iDigits;
nDigits = mix(nDigits, precision + 1, precision >= 0); // add 1 for dot if precision is positive
buf += iDigits;
if ((nDigits > 1) && (useScientificNot || fractF != 0 || precision > 0)) {
buf[0] = '.';
++buf;
--nDigits;
buf += PrintFractPart(buf, fractF, nDigits, precision);
}
if (!useScientificNot)
return;
sprintf(buf, "e%+02d", e10);
}
void spring_lua_format(float f, const char* fmt, char* buf)
{
if (fmt[0] == '\0')
return spring_lua_ftoa(f, buf);
// handles `%(sign)(width)(.precision)f`, i.e. %+10.2f
char bufC[128];
char* buf2 = bufC;
// insert sign; f might be NaN so check with signbit()
if (fmt[0] == '+' || fmt[0] == ' ') {
if (!std::signbit(f)) {
buf2[0] = fmt[0];
++buf2;
}
++fmt;
}
// width
const int width = atoi(fmt);
// precision
int precision = -1;
const char* dotPos = strchr(fmt, '.');
if (dotPos != nullptr)
precision = Clamp(atoi(fmt = dotPos + 1), 0, 15);
// convert the float
spring_lua_ftoa(f, buf2, precision);
// right align the number when `width` is given
const int len = strlen(bufC);
if (len < width) {
memset(buf, ' ', width - len);
buf += (width - len);
}
// copy the float string into dst
memcpy(buf, bufC, len + 1);
}
|