File: k_sinf.cpp

package info (click to toggle)
spring 105.0.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 108,860 kB
  • sloc: cpp: 467,785; ansic: 302,607; python: 12,925; java: 12,201; awk: 5,889; sh: 2,371; xml: 655; perl: 405; php: 276; objc: 194; makefile: 75; sed: 2
file content (57 lines) | stat: -rw-r--r-- 1,619 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* See the import.pl script for potential modifications */
/* k_sinf.c -- Simple version of k_sin.c
 * Conversion to Simple by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_sinf.c,v 1.4f 1995/05/10 20:46:33 jtc Exp $";
#endif

#include "SMath.h"
#include "math_private.h"

namespace streflop_libm {
#ifdef __STDC__
static const Simple 
#else
static Simple 
#endif
half =  5.0000000000e-01f,/* 0x3f000000 */
S1  = -1.6666667163e-01f, /* 0xbe2aaaab */
S2  =  8.3333337680e-03f, /* 0x3c088889 */
S3  = -1.9841270114e-04f, /* 0xb9500d01 */
S4  =  2.7557314297e-06f, /* 0x3638ef1b */
S5  = -2.5050759689e-08f, /* 0xb2d72f34 */
S6  =  1.5896910177e-10f; /* 0x2f2ec9d3 */

#ifdef __STDC__
	Simple __kernel_sinf(Simple x, Simple y, int iy)
#else
	Simple __kernel_sinf(x, y, iy)
	Simple x,y; int iy;		/* iy=0 if y is zero */
#endif
{
	Simple z,r,v;
	int32_t ix;
	GET_FLOAT_WORD(ix,x);
	ix &= 0x7fffffff;			/* high word of x */
	if(ix<0x32000000)			/* |x| < 2**-27 */
	   {if((int)x==0) return x;}		/* generate inexact */
	z	=  x*x;
	v	=  z*x;
	r	=  S2+z*(S3+z*(S4+z*(S5+z*S6)));
	if(iy==0) return x+v*(S1+z*r);
	else      return x-((z*(half*y-v*r)-y)-v*S1);
}
}