1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
#include <ctime>
#include "IncExternAI.h"
#include "IncGlobalAI.h"
CMaths::CMaths(AIClasses* ai) {
this->ai = ai;
mapfloat3height = ai->cb->GetMapHeight() * MAPUNIT2POS;
mapfloat3width = ai->cb->GetMapWidth() * MAPUNIT2POS;
MTRandInt.seed(time(NULL));
MTRandFloat.seed(MTRandInt());
#ifdef WIN32
QueryPerformanceFrequency(&ticksPerSecond);
#endif
}
CMaths::~CMaths() {
}
void CMaths::F3MapBound(float3& pos) {
if (pos.x < 65)
pos.x = 65;
else if (pos.x > mapfloat3width - 65)
pos.x = mapfloat3width - 65;
if (pos.z < 65)
pos.z = 65;
else if (pos.z > mapfloat3height - 65)
pos.z = mapfloat3height - 65;
}
float3 CMaths::F3Randomize(const float3& pos, float radius) {
float3 p;
p.x = pos.x + sin(float(RANDINT / 1000)) * radius;
p.z = pos.z + sin(float(RANDINT / 1000)) * radius;
return p;
}
void CMaths::F32XY(const float3& pos, int* x, int* y, int resolution) {
*x = int(pos.x / 8 / resolution);
*y = int(pos.z / 8 / resolution);
}
float3 CMaths::XY2F3(int x ,int y, int resolution) {
float3 testpos;
testpos.x = x * 8 * resolution;
testpos.y = 0;
testpos.z = y * 8 * resolution;
return testpos;
}
float CMaths::BuildMetalPerSecond(const UnitDef* builder,const UnitDef* built) {
if (builder->buildSpeed) {
float buildtime = built->buildTime / builder->buildSpeed;
return ((built->metalCost) / buildtime);
}
// MPS FAILED, unit has no buildspeed
return -1;
}
float CMaths::BuildEnergyPerSecond(const UnitDef* builder,const UnitDef* built) {
if (builder->buildSpeed) {
float buildtime = built->buildTime / builder->buildSpeed;
return ((built->energyCost) / buildtime);
}
// EPS FAILED, unit has no buildspeed
return -1;
}
float CMaths::BuildTime(const UnitDef* builder,const UnitDef* built) {
if (builder->buildSpeed)
return ((built->buildTime) / (builder->buildSpeed));
return -1;
}
/*
bool CMaths::FeasibleConstruction(const UnitDef* builder, const UnitDef* built, float MinMpc, float MinEpc) {
if (builder->buildSpeed) {
float buildtime = (built->buildTime) / (builder->buildSpeed);
float Echange = ((ai->cb->GetEnergyIncome()) * ECONRATIO) - (ai->cb->GetEnergyUsage()) - (built->energyCost / buildtime);
float ResultingRatio = (ai->cb->GetEnergy() + (Echange * buildtime)) / ai->cb->GetEnergyStorage();
if (ResultingRatio > MinEpc) {
float Mchange = ai->cb->GetMetalIncome() * ECONRATIO - ai->cb->GetMetalUsage() - built->metalCost / buildtime;
ResultingRatio = (ai->cb->GetMetal() + (Mchange * buildtime)) / (ai->cb->GetMetalStorage());
if (ResultingRatio > MinMpc) {
return true;
}
}
}
return false;
}
*/
bool CMaths::MFeasibleConstruction(const UnitDef* builder, const UnitDef* built, float MinMpc) {
if (builder->buildSpeed) {
float buildtime = (built->buildTime) / (builder->buildSpeed);
float Mchange = ((ai->cb->GetMetalIncome()) * ECONRATIO) - (ai->cb->GetMetalUsage()) - (built->metalCost / buildtime);
// KLOOTNOTE: dividing by actual metal storage
// means things become infeasible with greater
// M storage capacity
float denom = 1.0f; // ai->cb->GetMetalStorage();
float ResultingRatio = (ai->cb->GetMetal() + (Mchange * buildtime)) / denom;
if (ResultingRatio > MinMpc) {
return true;
}
}
return false;
}
bool CMaths::EFeasibleConstruction(const UnitDef* builder, const UnitDef* built, float MinEpc) {
if (builder->buildSpeed) {
float buildtime = (built->buildTime) / (builder->buildSpeed);
float Echange = ((ai->cb->GetEnergyIncome()) * ECONRATIO) - (ai->cb->GetEnergyUsage()) - (built->energyCost / buildtime);
// KLOOTNOTE: dividing by actual energy storage
// means things become infeasible with greater
// E storage capacity
float denom = 1.0f; // ai->cb->GetEnergyStorage();
float ResultingRatio = (ai->cb->GetEnergy() + (Echange * buildtime)) / denom;
if (ResultingRatio > MinEpc) {
return true;
}
}
return false;
}
float CMaths::ETA(int unit, const float3& destination) {
float speed = ai->cb->GetUnitDef(unit)->speed;
float distance = destination.distance2D(ai->cb->GetUnitPos(unit));
return (distance / speed * 2);
}
float CMaths::ETT(BuildTask& bt) {
float percentdone = (ai->cb->GetUnitHealth(bt.id)) / (ai->cb->GetUnitMaxHealth(bt.id));
float buildpower = 0.0f;
std::list<int> killbuilders;
for (std::list<int>::iterator i = bt.builders.begin(); i != bt.builders.end(); i++) {
if (ai->cb->GetUnitDef(*i))
buildpower += ai->cb->GetUnitDef(*i)->buildSpeed;
else
killbuilders.push_back(*i);
}
for (std::list<int>::iterator i = killbuilders.begin(); i != killbuilders.end(); i++) {
bt.builders.remove(*i);
}
if (buildpower > 0.0f) {
return ((ai->cb->GetUnitDef(bt.id)->buildTime) / buildpower) * (1 - percentdone);
}
return MY_FLT_MAX;
}
float CMaths::GetUnitCost(const UnitDef* unit) {
return ((unit->metalCost * METAL2ENERGY) + (unit->energyCost));
}
float CMaths::GetUnitCost(int unit) {
return (ai->cb->GetUnitDef(unit)->metalCost * METAL2ENERGY) + (ai->cb->GetUnitDef(unit)->energyCost);
}
float CMaths::RandNormal(float m, float s, bool positiveonly) {
// normal distribution with mean m and standard deviation s
float normal_x1, normal_x2, w;
// make two normally distributed variates by Box-Muller transformation
do {
normal_x1 = 2.0 * RANDFLOAT - 1.0;
normal_x2 = 2.0 * RANDFLOAT - 1.0;
w = normal_x1 * normal_x1 + normal_x2 * normal_x2;
}
while (w >= 1.0 || w < 1E-30);
w = sqrt(log(w) * (-2.0 / w));
// normal_x1 and normal_x2 are independent normally distributed variates
normal_x1 *= w;
if (!positiveonly)
return (normal_x1 * s + m);
else
return std::max(0.0f, normal_x1 * s + m);
}
float CMaths::RandFloat() {
return MTRandFloat();
}
unsigned int CMaths::RandInt() {
return MTRandInt();
}
void CMaths::TimerStart() {
#ifdef WIN32
QueryPerformanceCounter(&tick_start);
tick_laststop = tick_start;
#else
gettimeofday(&tick_start, NULL);
tick_laststop = tick_start;
#endif
}
int CMaths::TimerTicks() {
#ifdef WIN32
QueryPerformanceCounter(&tick_end);
tick_laststop = tick_end;
return (tick_end.QuadPart - tick_start.QuadPart);
#else
gettimeofday(&tick_end, NULL);
tick_laststop = tick_end;
return ((tick_end.tv_sec - tick_start.tv_sec) * 1000000 + (tick_end.tv_usec - tick_start.tv_usec));
#endif
}
float CMaths::TimerSecs() {
#ifdef WIN32
QueryPerformanceCounter(&tick_end);
tick_laststop = tick_end;
return ((float(tick_end.QuadPart) - float(tick_start.QuadPart)) / float(ticksPerSecond.QuadPart));
#else
gettimeofday(&tick_end, NULL);
tick_laststop = tick_end;
return ((tick_end.tv_sec - tick_start.tv_sec) + (tick_end.tv_usec - tick_start.tv_usec) * 1.0e-6f);
#endif
}
|