1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cstring>
#include "Camera.h"
#include "CameraHandler.h"
#include "UI/MouseHandler.h"
#include "Map/Ground.h"
#include "Map/ReadMap.h"
#include "Rendering/GL/myGL.h"
#include "Rendering/GlobalRendering.h"
#include "Rendering/GL/MatrixState.hpp"
#include "System/SpringMath.h"
#include "System/float3.h"
#include "System/Matrix44f.h"
#include "System/Config/ConfigHandler.h"
CONFIG(float, EdgeMoveWidth)
.defaultValue(0.02f)
.minimumValue(0.0f)
.description("The width (in percent of screen size) of the EdgeMove scrolling area.");
CONFIG(bool, EdgeMoveDynamic)
.defaultValue(true)
.description("If EdgeMove scrolling speed should fade with edge distance.");
CCamera::CCamera(unsigned int cameraType, unsigned int projectionType)
: camType(cameraType)
, projType(projectionType)
{
assert(cameraType < CAMTYPE_COUNT);
memset(viewport, 0, 4 * sizeof(int));
memset(movState, 0, sizeof(movState));
memset(rotState, 0, sizeof(rotState));
frustum.scales.z = CGlobalRendering::MIN_ZNEAR_DIST;
frustum.scales.w = CGlobalRendering::MAX_VIEW_RANGE;
SetVFOV(45.0f);
UpdateFrustum();
}
CCamera* CCamera::GetActive()
{
return (CCameraHandler::GetActiveCamera());
}
void CCamera::CopyState(const CCamera* cam)
{
// note: xy-scales are only relevant for CAMTYPE_SHADOW
frustum = cam->frustum;
forward = cam->GetForward();
right = cam->GetRight();
up = cam->GetUp();
pos = cam->GetPos();
rot = cam->GetRot();
fov = cam->GetVFOV();
halfFov = cam->GetHalfFov();
tanHalfFov = cam->GetTanHalfFov();
lppScale = cam->GetLPPScale();
aspectRatio = cam->GetAspectRatio();
// do not copy this, each camera knows its own type
// camType = cam->GetCamType();
}
void CCamera::CopyStateReflect(const CCamera* cam)
{
assert(cam->GetCamType() != CAMTYPE_UWREFL);
assert( GetCamType() == CAMTYPE_UWREFL);
SetDir(cam->GetDir() * float3(1.0f, -1.0f, 1.0f));
SetPos(cam->GetPos() * float3(1.0f, -1.0f, 1.0f));
SetRotZ(-cam->GetRot().z);
SetVFOV(cam->GetVFOV());
Update(false, true, false);
}
void CCamera::Update(const UpdateParams& p)
{
lppScale = (2.0f * tanHalfFov) * globalRendering->pixelY;
aspectRatio = globalRendering->aspectRatio;
// should be set before UpdateMatrices
if (p.updateViewRange)
UpdateViewRange();
if (p.updateDirs)
UpdateDirsFromRot(rot);
if (p.updateMats)
UpdateMatrices(globalRendering->viewSizeX, globalRendering->viewSizeY, aspectRatio);
if (p.updateViewPort)
UpdateViewPort(globalRendering->viewPosX, 0, globalRendering->viewSizeX, globalRendering->viewSizeY);
if (p.updateFrustum)
UpdateFrustum();
// not done here
// LoadViewPort();
}
void CCamera::UpdateFrustum()
{
// scale-factors for {x,y}-axes
float2 nAxisScales;
float2 fAxisScales;
switch (projType) {
case PROJTYPE_PERSP: {
// NOTE: "-" because we want normals
const float3 forwardy = (-forward * tanHalfFov );
const float3 forwardx = (-forward * math::tan(aspectRatio * halfFov));
const float2 tanHalfFOVs = {math::tan(GetHFOV() * 0.5f * math::DEG_TO_RAD), tanHalfFov}; // horz, vert
frustum.planes[FRUSTUM_PLANE_TOP] = (forwardy + up).UnsafeANormalize();
frustum.planes[FRUSTUM_PLANE_BOT] = (forwardy - up).UnsafeANormalize();
frustum.planes[FRUSTUM_PLANE_RGT] = (forwardx + right).UnsafeANormalize();
frustum.planes[FRUSTUM_PLANE_LFT] = (forwardx - right).UnsafeANormalize();
nAxisScales = {frustum.scales.z * tanHalfFOVs.x, frustum.scales.z * tanHalfFOVs.y}; // x, y
fAxisScales = {frustum.scales.w * tanHalfFOVs.x, frustum.scales.w * tanHalfFOVs.y}; // x, y
} break;
case PROJTYPE_ORTHO: {
frustum.planes[FRUSTUM_PLANE_TOP] = up;
frustum.planes[FRUSTUM_PLANE_BOT] = -up;
frustum.planes[FRUSTUM_PLANE_RGT] = right;
frustum.planes[FRUSTUM_PLANE_LFT] = -right;
nAxisScales = {frustum.scales.x, frustum.scales.y};
fAxisScales = {frustum.scales.x, frustum.scales.y};
} break;
default: {
assert(false);
} break;
}
frustum.planes[FRUSTUM_PLANE_FRN] = -forward;
frustum.planes[FRUSTUM_PLANE_BCK] = forward;
frustum.verts[0] = pos + (forward * frustum.scales.z) + (right * -nAxisScales.x) + (up * nAxisScales.y); // ntl
frustum.verts[1] = pos + (forward * frustum.scales.z) + (right * nAxisScales.x) + (up * nAxisScales.y); // ntr
frustum.verts[2] = pos + (forward * frustum.scales.z) + (right * nAxisScales.x) + (up * -nAxisScales.y); // nbr
frustum.verts[3] = pos + (forward * frustum.scales.z) + (right * -nAxisScales.x) + (up * -nAxisScales.y); // nbl
frustum.verts[4] = pos + (forward * frustum.scales.w) + (right * -fAxisScales.x) + (up * fAxisScales.y); // ftl
frustum.verts[5] = pos + (forward * frustum.scales.w) + (right * fAxisScales.x) + (up * fAxisScales.y); // ftr
frustum.verts[6] = pos + (forward * frustum.scales.w) + (right * fAxisScales.x) + (up * -fAxisScales.y); // fbr
frustum.verts[7] = pos + (forward * frustum.scales.w) + (right * -fAxisScales.x) + (up * -fAxisScales.y); // fbl
frustum.edges[0] = (frustum.verts[1] - frustum.verts[0]).UnsafeANormalize(); // ntr - ntl (same as ftr - ftl)
frustum.edges[1] = (frustum.verts[0] - frustum.verts[3]).UnsafeANormalize(); // ntl - nbl (same as ftl - fbl)
frustum.edges[2] = (frustum.verts[4] - frustum.verts[0]).UnsafeANormalize(); // ftl - ntl
frustum.edges[3] = (frustum.verts[5] - frustum.verts[1]).UnsafeANormalize(); // ftr - ntr
frustum.edges[4] = (frustum.verts[6] - frustum.verts[2]).UnsafeANormalize(); // fbr - nbr
frustum.edges[5] = (frustum.verts[7] - frustum.verts[3]).UnsafeANormalize(); // fbl - nbl
if (camType == CAMTYPE_VISCUL)
return;
// vis-culling is always performed from player's (or light's)
// POV but also happens during e.g. cubemap generation; copy
// over the frustum planes we just calculated above such that
// GetFrustumSides can be called by all parties interested in
// VC
//
// note that this is the only place where VISCUL is updated!
CCamera* visCam = CCameraHandler::GetCamera(CAMTYPE_VISCUL);
CCamera* curCam = CCameraHandler::GetCamera(camType);
visCam->CopyState(curCam);
}
void CCamera::UpdateMatrices(unsigned int vsx, unsigned int vsy, float var)
{
// recalculate the projection transform
switch (projType) {
case PROJTYPE_PERSP: {
gluPerspectiveSpring(var, frustum.scales.z, frustum.scales.w);
} break;
case PROJTYPE_ORTHO: {
glOrthoScaledSpring(vsx, vsy, frustum.scales.z, frustum.scales.w);
} break;
default: {
assert(false);
} break;
}
// FIXME:
// should be applying the offsets to pos/up/right/forward/etc,
// but without affecting the real positions (need an intermediary)
const float3 fShake = ((forward * (1.0f + tiltOffset.z)) + (right * tiltOffset.x) + (up * tiltOffset.y)).ANormalize();
const float3 camPos = pos + posOffset;
const float3 center = camPos + fShake;
// recalculate the view transform
gluLookAtSpring(camPos, center, up);
// create extra matrices (useful for shaders)
viewProjectionMatrix = projectionMatrix * viewMatrix;
viewMatrixInverse = viewMatrix.InvertAffine();
projectionMatrixInverse = projectionMatrix.Invert();
viewProjectionMatrixInverse = viewProjectionMatrix.Invert();
billboardMatrix = viewMatrix;
billboardMatrix.SetPos(ZeroVector);
billboardMatrix.Transpose(); // viewMatrix is affine, equals inverse
}
void CCamera::UpdateViewPort(int px, int py, int sx, int sy)
{
viewport[0] = px;
viewport[1] = py;
viewport[2] = sx;
viewport[3] = sy;
}
void CCamera::UpdateLoadViewPort(int px, int py, int sx, int sy)
{
UpdateViewPort(px, py, sx, sy);
LoadViewPort();
}
void CCamera::LoadViewPort() const
{
glAttribStatePtr->ViewPort(viewport[0], viewport[1], viewport[2], viewport[3]);
}
void CCamera::UpdateViewRange()
{
#if 0
// horizon-probe direction
const float3 hpPixelDir = (forward * XZVector + UpVector * -0.01f).Normalize();
const float3 tlPixelDir = CalcPixelDir( 0, 0);
const float3 trPixelDir = CalcPixelDir(globalRendering->viewSizeX, 0);
const float3 brPixelDir = CalcPixelDir(globalRendering->viewSizeX, globalRendering->viewSizeY);
const float3 blPixelDir = CalcPixelDir( 0, globalRendering->viewSizeY);
#endif
#if 0
constexpr float SQ_MAX_VIEW_RANGE = Square(CGlobalRendering::MAX_VIEW_RANGE);
#endif
constexpr float ZFAR_ZNEAR_FACTOR = 0.001f;
const float maxEdgeDistX = std::max(pos.x, float3::maxxpos - pos.x);
const float maxEdgeDistZ = std::max(pos.z, float3::maxzpos - pos.z);
const float maxEdgeDist = math::sqrt(Square(maxEdgeDistX) + Square(maxEdgeDistZ));
const float mapMinHeight = readMap->GetCurrMinHeight();
float wantedViewRange = 0.0f;
#if 0
// only pick horizon probe-dir if between bottom and top planes
if (hpPixelDir.y >= (blPixelDir.y + brPixelDir.y) * 0.5f && hpPixelDir.y <= (tlPixelDir.y + trPixelDir.y) * 0.5f)
wantedViewRange = CGround::LinePlaneCol(pos, hpPixelDir, SQ_MAX_VIEW_RANGE, mapMinHeight);
#endif
// camera-height dependence (i.e. TAB-view)
wantedViewRange = std::max(wantedViewRange, (pos.y - std::max(0.0f, mapMinHeight)) * 2.0f);
// view-angle dependence (i.e. FPS-view)
// forward normally points down, so 1-min(0, dot(f,u))
// will be >= 1 and increase the effective maxEdgeDist
wantedViewRange = std::max(wantedViewRange, (1.0f - std::min(0.0f, forward.dot(UpVector))) * maxEdgeDist);
#if 0
wantedViewRange = std::max(wantedViewRange, CGround::LinePlaneCol(pos, tlPixelDir, SQ_MAX_VIEW_RANGE, mapMinHeight));
wantedViewRange = std::max(wantedViewRange, CGround::LinePlaneCol(pos, trPixelDir, SQ_MAX_VIEW_RANGE, mapMinHeight));
wantedViewRange = std::max(wantedViewRange, CGround::LinePlaneCol(pos, brPixelDir, SQ_MAX_VIEW_RANGE, mapMinHeight));
wantedViewRange = std::max(wantedViewRange, CGround::LinePlaneCol(pos, blPixelDir, SQ_MAX_VIEW_RANGE, mapMinHeight));
wantedViewRange = Clamp(wantedViewRange, CGlobalRendering::MIN_ZNEAR_DIST, CGlobalRendering::MAX_VIEW_RANGE);
#endif
frustum.scales.z = std::max(wantedViewRange * ZFAR_ZNEAR_FACTOR, globalRendering->minViewRange);
frustum.scales.w = std::min(wantedViewRange , globalRendering->maxViewRange);
}
#if 0
// axis-aligned bounding box test (AABB)
bool CCamera::InView(const AABB& aabb) const
{
// orthographic plane offsets along each respective normal; [0] = LFT&RGT, [1] = TOP&BOT
const float xyPlaneOffsets[2] = {frustum.scales.x, frustum.scales.y};
const float zwPlaneOffsets[2] = {frustum.scales.z, frustum.scales.w};
// [i*2+0] := point, [i*2+1] := normal
const float3 boxFaces[6 * 2] = {
boxCenter + FwdVector * boxScales.z, FwdVector, // front
boxCenter - FwdVector * boxScales.z, -FwdVector, // back
boxCenter + RgtVector * boxScales.x, RgtVector, // right
boxCenter - RgtVector * boxScales.x, -RgtVector, // left
boxCenter + UpVector * boxScales.y, UpVector, // top
boxCenter - UpVector * boxScales.y, -UpVector, // bottom
};
const float3 boxVerts[8] = {
// bottom
{mins.x, mins.y, mins.z},
{maxs.x, mins.y, mins.z},
{maxs.x, mins.y, maxs.z},
{mins.x, mins.y, maxs.z},
// top
{mins.x, maxs.y, mins.z},
{maxs.x, maxs.y, mins.z},
{maxs.x, maxs.y, maxs.z},
{mins.x, maxs.y, maxs.z},
};
{
// test box planes
for (unsigned int i = 0; i < 6; i++) {
unsigned int n = 0;
for (unsigned int j = 0; j < 8; j++) {
n += (boxFaces[i * 2 + 1].dot(frustum.verts[j] - boxFaces[i * 2 + 0]) > 0.0f);
}
if (n == 8)
return false;
}
}
{
// test cam planes (LRTB)
for (unsigned int i = FRUSTUM_PLANE_LFT; i < FRUSTUM_PLANE_FRN; i++) {
unsigned int n = 0;
for (unsigned int j = 0; j < 8; j++) {
n += (frustum.planes[i].dot(boxVerts[j] - pos) > xyPlaneOffsets[i >> 1]);
}
// fully in front of this plane, so outside frustum (normals point outward)
if (n == 8)
return false;
}
}
{
// test cam planes (NF)
for (unsigned int i = FRUSTUM_PLANE_FRN; i < FRUSTUM_PLANE_CNT; i++) {
unsigned int n = 0;
for (unsigned int j = 0; j < 8; j++) {
n += (frustum.planes[i].dot(boxVerts[j] - (pos + forward * zwPlaneOffsets[i & 1])) > 0.0f);
}
if (n == 8)
return false;
}
}
{
for (unsigned int i = 0; i < 6; i++) {
for (unsigned int j = 0; j < 6; j++) {
if (boxFaces[i * 2 + 1] == frustum.planes[j])
continue;
float3 testAxis = boxFaces[i * 2 + 1].cross(frustum.planes[j]);
float3 testAxisN = testAxis.Normalize();
float2 boxAxisDists = {std::numeric_limits<float>::max(), -std::numeric_limits<float>::max()}; // .x=min,.y=max
float2 frustAxisDists = {std::numeric_limits<float>::max(), -std::numeric_limits<float>::max()}; // .x=min,.y=max
float4 projAxisDists;
for (unsigned int k = 0; k < 8; k++) {
boxAxisDists.x = std::min(boxAxisDists.x, boxVerts[k].dot(testAxisN));
boxAxisDists.y = std::max(boxAxisDists.y, boxVerts[k].dot(testAxisN));
frustAxisDists.x = std::min(frustAxisDists.x, frustum.verts[k].dot(testAxisN));
frustAxisDists.y = std::max(frustAxisDists.y, frustum.verts[k].dot(testAxisN));
}
projAxisDists.x = std::min(boxAxisDists.x, frustAxisDists.x); // min(minDists)
projAxisDists.y = std::min(boxAxisDists.y, frustAxisDists.y); // min(maxDists)
projAxisDists.z = std::max(boxAxisDists.x, frustAxisDists.x); // max(minDists)
projAxisDists.w = std::max(boxAxisDists.y, frustAxisDists.y); // max(maxDists)
if ((projAxisDists.y >= projAxisDists.z) && (projAxisDists.x <= projAxisDists.w))
continue;
return false;
}
}
}
return true;
}
#endif
void CCamera::SetVFOV(const float angle)
{
fov = angle;
halfFov = (fov * 0.5f) * math::DEG_TO_RAD;
tanHalfFov = math::tan(halfFov);
}
float CCamera::GetHFOV() const {
return (2.0f * math::atan(tanHalfFov * aspectRatio) * math::RAD_TO_DEG);
}
#if 0
float CCamera::CalcTanHalfHFOV() const {
const float half_h_fov_deg = math::atan(thvfov * h_aspect_ratio) * math::RAD_TO_DEG;
const float half_h_fov_rad = half_h_fov_deg * math::DEG_TO_RAD;
return (math::tan(half_h_fov_rad));
}
#endif
float3 CCamera::GetRotFromDir(float3 fwd)
{
fwd.Normalize();
// NOTE:
// atan2(0.0, 0.0) returns 0.0
// atan2(0.0, -0.0) returns PI
// azimuth (yaw) 0 is on negative z-axis
// roll-angle (rot.z) is always 0 by default
float3 r;
r.x = math::acos(fwd.y);
r.y = math::atan2(fwd.x, -fwd.z);
r.z = 0.0f;
return r;
}
float3 CCamera::GetFwdFromRot(const float3& r)
{
float3 fwd;
fwd.x = std::sin(r.x) * std::sin(r.y);
fwd.z = std::sin(r.x) * (-std::cos(r.y));
fwd.y = std::cos(r.x);
return fwd;
}
float3 CCamera::GetRgtFromRot(const float3& r)
{
// FIXME:
// right should always be "right" relative to forward
// (i.e. up should always point "up" in WS and camera
// can not flip upside down) but is not
//
// fwd=(0,+1,0) -> rot=GetRotFromDir(fwd)=(0.0, PI, 0.0) -> GetRgtFromRot(rot)=(-1.0, 0.0, 0.0)
// fwd=(0,-1,0) -> rot=GetRotFromDir(fwd)=( PI, PI, 0.0) -> GetRgtFromRot(rot)=(+1.0, 0.0, 0.0)
//
float3 rgt;
rgt.x = std::sin(math::HALFPI - r.z) * std::sin(r.y + math::HALFPI);
rgt.z = std::sin(math::HALFPI - r.z) * (-std::cos(r.y + math::HALFPI));
rgt.y = std::cos(math::HALFPI - r.z);
return rgt;
}
void CCamera::UpdateDirsFromRot(const float3& r)
{
forward = GetFwdFromRot(r);
right = GetRgtFromRot(r);
up = (right.cross(forward)).Normalize();
}
void CCamera::SetDir(const float3& dir)
{
// if (dir == forward) return;
// update our axis-system from the angles
SetRot(GetRotFromDir(dir) + (FwdVector * rot.z));
assert(dir.dot(forward) > 0.9f);
}
float3 CCamera::CalcPixelDir(int x, int y) const
{
const int vsx = std::max(1, globalRendering->viewSizeX);
const int vsy = std::max(1, globalRendering->viewSizeY);
const float dx = float(x - globalRendering->viewPosX - (vsx >> 1)) / vsy * (tanHalfFov * 2.0f);
const float dy = float(y - (vsy >> 1)) / vsy * (tanHalfFov * 2.0f);
return ((forward - up * dy + right * dx).Normalize());
}
float3 CCamera::CalcWindowCoordinates(const float3& objPos) const
{
// same as gluProject()
const float4 projPos = viewProjectionMatrix * float4(objPos, 1.0f);
const float3 clipPos = projPos / projPos.w;
float3 winPos;
winPos.x = viewport[0] + viewport[2] * (clipPos.x + 1.0f) * 0.5f;
winPos.y = viewport[1] + viewport[3] * (clipPos.y + 1.0f) * 0.5f;
winPos.z = (clipPos.z + 1.0f) * 0.5f;
return winPos;
}
inline void CCamera::gluPerspectiveSpring(float aspect, float zn, float zf) {
const float t = zn * tanHalfFov;
const float b = -t;
const float l = b * aspect;
const float r = t * aspect;
projectionMatrix = clipControlMatrix * CMatrix44f::PerspProj(l, r, b, t, zn, zf);
}
// same as glOrtho(-1, 1, -1, 1, zn, zf) plus glScale(sx, sy, 1)
inline void CCamera::glOrthoScaledSpring(
const float sx,
const float sy,
const float zn,
const float zf
) {
const float l = -1.0f * sx;
const float r = 1.0f * sx;
const float b = -1.0f * sy;
const float t = 1.0f * sy;
projectionMatrix = clipControlMatrix * CMatrix44f::OrthoProj(l, r, b, t, zn, zf);
}
inline void CCamera::gluLookAtSpring(const float3& eye, const float3& center, const float3& up)
{
const float3 f = (center - eye).ANormalize();
const float3 s = f.cross(up);
const float3 u = s.cross(f);
viewMatrix[ 0] = s.x;
viewMatrix[ 1] = u.x;
viewMatrix[ 2] = -f.x;
viewMatrix[ 4] = s.y;
viewMatrix[ 5] = u.y;
viewMatrix[ 6] = -f.y;
viewMatrix[ 8] = s.z;
viewMatrix[ 9] = u.z;
viewMatrix[10] = -f.z;
// save a glTranslated(-eye.x, -eye.y, -eye.z) call
viewMatrix[12] = s.dot(-eye);
viewMatrix[13] = u.dot(-eye);
viewMatrix[14] = f.dot( eye);
}
void CCamera::CalcFrustumLines(float miny, float maxy, float scale, bool neg) {
const float3 isectParams = {miny, maxy, 1.0f / scale};
// only non-zero for orthographic cameras
const float3 planeOffsets[FRUSTUM_PLANE_FRN] = {
-right * frustum.scales.x,
right * frustum.scales.x,
up * frustum.scales.y,
-up * frustum.scales.y,
};
// reset counts per side
frustumLines[FRUSTUM_SIDE_POS][4].sign = 0;
frustumLines[FRUSTUM_SIDE_NEG][4].sign = 0;
// note: order does not matter
for (unsigned int i = FRUSTUM_PLANE_LFT, side = neg? FRUSTUM_SIDE_NEG: FRUSTUM_SIDE_POS; i < FRUSTUM_PLANE_FRN; i++) {
CalcFrustumLine(frustum.planes[i], planeOffsets[i], isectParams, side);
}
assert(!neg || frustumLines[FRUSTUM_SIDE_NEG][4].sign == 4);
}
void CCamera::CalcFrustumLine(
const float3& normal,
const float3& offset,
const float3& params,
unsigned int side
) {
FrustumLine line;
// compose an orthonormal axis-system around the frustum plane normal
// top plane normal can point straight up if camera is angled downward
const float3 aux = (std::fabs(normal.dot(UpVector)) > 0.995f)? -forward: UpVector;
float3 xdir = (normal.cross( aux)).UnsafeANormalize();
float3 ydir = (normal.cross(xdir)).UnsafeANormalize();
// intersection of vector from <pos> along <ydir> with xz-plane
// (on <miny> if <normal> is angled toward the sky, else <maxy>)
float3 pInt;
// prevent DIV0 when calculating line.dir
xdir.z *= (std::fabs(xdir.z) > 0.001f);
xdir.z = std::max(std::fabs(xdir.z), 0.001f) * std::copysign(1.0f, xdir.z);
ydir.y = -std::fabs(ydir.y); // maintenance HACK for dot(N,-F)
if (ydir.y != 0.0f) {
const float py = params[normal.y <= 0.0f];
const float dy = pos.y + offset.y - py;
pInt = (pos + offset) - ydir * (dy / ydir.y);
}
// <line.dir> is the direction coefficient (0 ==> parallel to z-axis, inf ==> parallel to x-axis)
// in the xz-plane; <line.base> is the x-coordinate at which line intersects x-axis; <line.sign>
// indicates line direction, ie. left-to-right (whenever <xdir.z> is negative) or right-to-left
// NOTE:
// (b.x / b.z) is actually the reciprocal of the DC (ie. the number of steps along +x for
// one step along +y); the world z-axis is inverted wrt. a regular Carthesian grid, so the
// DC is also inverted
// FIXME: slope-intercept form is terrible
line.sign = Sign(int(xdir.z <= 0.0f));
line.dir = (xdir.x / xdir.z);
line.base = (pInt.x * params.z) - ((pInt.z * params.z) * line.dir);
line.minz = ( 0.0f) - (mapDims.mapy);
line.maxz = (mapDims.mapy * SQUARE_SIZE) + (mapDims.mapy);
int index = (line.sign == 1 || side == FRUSTUM_SIDE_NEG);
int& count = frustumLines[index][4].sign;
// store all lines in [NEG] (regardless of actual sign) if wanted by caller
frustumLines[index][count++] = line;
}
void CCamera::ClipFrustumLines(const float zmin, const float zmax, bool neg)
{
auto& lines = frustumLines[neg];
for (int i = 0, cnt = lines[4].sign; i < cnt; i++) {
for (int j = 0; j < cnt; j++) {
if (i == j)
continue;
FrustumLine& fli = lines[i];
FrustumLine& flj = lines[j];
const float dbase = fli.base - flj.base;
const float ddir = fli.dir - flj.dir;
if (ddir == 0.0f)
continue;
const float colz = -(dbase / ddir);
if ((flj.sign * ddir) > 0.0f) {
if ((colz > fli.minz) && (colz < zmax))
fli.minz = colz;
} else {
if ((colz < fli.maxz) && (colz > zmin))
fli.maxz = colz;
}
}
}
}
float3 CCamera::GetMoveVectorFromState(bool fromKeyState) const
{
float camDeltaTime = globalRendering->lastFrameTime;
float camMoveSpeed = 1.0f;
camMoveSpeed *= (1.0f - movState[MOVE_STATE_SLW] * 0.9f);
camMoveSpeed *= (1.0f + movState[MOVE_STATE_FST] * 9.0f);
float3 v = FwdVector * camMoveSpeed;
if (fromKeyState) {
v.y += (camDeltaTime * 0.001f * movState[MOVE_STATE_FWD]);
v.y -= (camDeltaTime * 0.001f * movState[MOVE_STATE_BCK]);
v.x += (camDeltaTime * 0.001f * movState[MOVE_STATE_RGT]);
v.x -= (camDeltaTime * 0.001f * movState[MOVE_STATE_LFT]);
} else {
const int screenH = globalRendering->viewSizeY;
const int screenW = globalRendering->viewSizeX << globalRendering->dualScreenMode;
const float width = configHandler->GetFloat("EdgeMoveWidth");
int2 border;
border.x = std::max<int>(1, screenW * width);
border.y = std::max<int>(1, screenH * width);
float2 move;
// must be float, ints don't save the sign in case of 0 and we need it for copysign()
float2 distToEdge = {Clamp(mouse->lastx, 0, screenW) * 1.0f, Clamp(mouse->lasty, 0, screenH) * 1.0f};
if (((screenW - 1) - distToEdge.x) < distToEdge.x) distToEdge.x = -((screenW - 1) - distToEdge.x);
if (((screenH - 1) - distToEdge.y) < distToEdge.y) distToEdge.y = -((screenH - 1) - distToEdge.y);
if (configHandler->GetBool("EdgeMoveDynamic")) {
move.x = Clamp(float(border.x - std::abs(distToEdge.x)) / border.x, 0.0f, 1.0f);
move.y = Clamp(float(border.y - std::abs(distToEdge.y)) / border.y, 0.0f, 1.0f);
} else {
move.x = int(std::abs(distToEdge.x) < border.x);
move.y = int(std::abs(distToEdge.y) < border.y);
}
move.x = std::copysign(move.x, -distToEdge.x);
move.y = std::copysign(move.y, distToEdge.y);
v.x = (camDeltaTime * 0.001f * move.x);
v.y = (camDeltaTime * 0.001f * move.y);
}
return v;
}
bool CCamera::Frustum::IntersectSphere(const float3& cp, const float4& sp) const
{
// need a vector since planes do not carry origin-distance
const float3 vec = sp - cp;
// use arrays because neither float2 nor float4 have an operator[]
const float xyPlaneOffsets[2] = {scales.x, scales.y};
const float zwPlaneOffsets[2] = {scales.z, scales.w};
static_assert(FRUSTUM_PLANE_LFT == 0, "");
static_assert(FRUSTUM_PLANE_FRN == 4, "");
#if 0
// test if <sp> is in front of the near-plane
if (vec.dot(planes[FRUSTUM_PLANE_FRN]) > (zwPlaneOffsets[0] + sp.w))
return false;
#endif
// test if <sp> is in front of a side-plane (LRTB)
for (unsigned int i = FRUSTUM_PLANE_LFT; i < FRUSTUM_PLANE_FRN; i++) {
if (vec.dot(planes[i]) > (xyPlaneOffsets[i >> 1] + sp.w))
return false;
}
// test if <sp> is behind the far-plane
return !(vec.dot(planes[FRUSTUM_PLANE_BCK]) > (zwPlaneOffsets[1] + sp.w));
}
bool CCamera::Frustum::IntersectAABB(const AABB& b) const
{
// edge axes and normals are identical for AABBs
constexpr float3 aabbPlanes[3] = {
RgtVector,
UpVector,
FwdVector
};
float3 aabbVerts[8];
float3 crossAxes[3 * 6];
b.CalcCorners(aabbVerts);
const auto IsSepAxis = [](const float3& axis, const float3* frustVerts, const float3* aabbVerts) {
float2 frustProjRange = {std::numeric_limits<float>::max(), -std::numeric_limits<float>::max()};
float2 aabbProjRange = {std::numeric_limits<float>::max(), -std::numeric_limits<float>::max()};
float frustProjDists[8];
float aabbProjDists[8];
for (int i = 0; i < 8; i++) {
frustProjDists[i] = axis.dot(frustVerts[i]);
frustProjRange.x = std::min(frustProjRange.x, frustProjDists[i]);
frustProjRange.y = std::max(frustProjRange.y, frustProjDists[i]);
aabbProjDists[i] = axis.dot(aabbVerts[i]);
aabbProjRange.x = std::min(aabbProjRange.x, aabbProjDists[i]);
aabbProjRange.y = std::max(aabbProjRange.y, aabbProjDists[i]);
}
return (!AABB::RangeOverlap(frustProjRange, aabbProjRange));
};
const auto AxisTestPred = [&](const float3& testAxis) {
return (IsSepAxis(testAxis, &verts[0], aabbVerts));
};
if (std::find_if(&aabbPlanes[0], &aabbPlanes[0] + 3, AxisTestPred) != (&aabbPlanes[0] + 3))
return false;
if (std::find_if(&planes[0], &planes[0] + 6, AxisTestPred) != (&planes[0] + 6))
return false;
for (unsigned int i = 0; i < 3; i++) {
for (unsigned int j = 0; j < 6; j++) {
crossAxes[i * 6 + j] = (aabbPlanes[i].cross(edges[j])).SafeNormalize();
}
}
return (std::find_if(&crossAxes[0], &crossAxes[0] + 3 * 6, AxisTestPred) == (&crossAxes[0] + 3 * 6));
}
|