File: PathManager.cpp

package info (click to toggle)
spring 106.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 55,260 kB
  • sloc: cpp: 543,946; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (790 lines) | stat: -rw-r--r-- 24,532 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include "PathManager.h"
#include "PathConstants.h"
#include "PathFinder.h"
#include "PathEstimator.h"
#include "PathFlowMap.hpp"
#include "PathHeatMap.hpp"
#include "PathLog.h"
#include "PathMemPool.h"
#include "Map/MapInfo.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/Objects/SolidObject.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "System/Log/ILog.h"
#include "System/TimeProfiler.h"


static CPathFinder    gMaxResPF;
static CPathEstimator gMedResPE;
static CPathEstimator gLowResPE;


CPathManager::CPathManager()
: maxResPF(nullptr)
, medResPE(nullptr)
, lowResPE(nullptr)
, pathFlowMap(nullptr)
, pathHeatMap(nullptr)
, nextPathID(0)
{
	IPathFinder::InitStatic();
	CPathFinder::InitStatic();

	pathFlowMap = PathFlowMap::GetInstance();
	pathHeatMap = PathHeatMap::GetInstance();

	pathMap.reserve(1024);

	// PathNode::nodePos is an ushort2, PathNode::nodeNum is an int
	// therefore the maximum map size is limited to 64k*64k squares
	assert(mapDims.mapx <= 0xFFFFU && mapDims.mapy <= 0xFFFFU);
}

CPathManager::~CPathManager()
{
	// Finalize is not called in case of forced exit
	if (maxResPF != nullptr) {
		lowResPE->Kill();
		medResPE->Kill();
		maxResPF->Kill();

		maxResPF = nullptr;
		medResPE = nullptr;
		lowResPE = nullptr;
	}

	PathHeatMap::FreeInstance(pathHeatMap);
	PathFlowMap::FreeInstance(pathFlowMap);
	IPathFinder::KillStatic();
}


void CPathManager::RemoveCacheFiles()
{
	medResPE->RemoveCacheFile("pe" , mapInfo->map.name);
	lowResPE->RemoveCacheFile("pe2", mapInfo->map.name);
}


std::uint32_t CPathManager::GetPathCheckSum() const {
	assert(IsFinalized());
	return (medResPE->GetPathChecksum() + lowResPE->GetPathChecksum());
}

std::int64_t CPathManager::Finalize() {
	const spring_time t0 = spring_gettime();

	{
		maxResPF = &gMaxResPF;
		medResPE = &gMedResPE;
		lowResPE = &gLowResPE;

		// maxResPF only runs on the main thread, so can be unsafe
		maxResPF->Init(false);
		medResPE->Init(maxResPF, MEDRES_PE_BLOCKSIZE, "pe" , mapInfo->map.name);
		lowResPE->Init(medResPE, LOWRES_PE_BLOCKSIZE, "pe2", mapInfo->map.name);
	}

	const spring_time dt = spring_gettime() - t0;
	return (dt.toMilliSecsi());
}


void CPathManager::FinalizePath(MultiPath* path, const float3 startPos, const float3 goalPos, const bool cantGetCloser)
{
	IPath::Path* sp = &path->lowResPath;
	IPath::Path* ep = &path->maxResPath;

	if (!path->medResPath.path.empty())
		sp = &path->medResPath;
	if (!path->maxResPath.path.empty())
		sp = &path->maxResPath;

	if (!sp->path.empty()) {
		sp->path.back() = startPos;
		sp->path.back().y = CMoveMath::yLevel(*path->moveDef, sp->path.back());
	}

	if (!path->maxResPath.path.empty() && !path->medResPath.path.empty())
		path->medResPath.path.back() = path->maxResPath.path.front();

	if (!path->medResPath.path.empty() && !path->lowResPath.path.empty())
		path->lowResPath.path.back() = path->medResPath.path.front();

	if (cantGetCloser)
		return;


	if (!path->medResPath.path.empty())
		ep = &path->medResPath;
	if (!path->lowResPath.path.empty())
		ep = &path->lowResPath;

	if (!ep->path.empty()) {
		ep->path.front() = goalPos;
		ep->path.front().y = CMoveMath::yLevel(*path->moveDef, ep->path.front());
	}
}


IPath::SearchResult CPathManager::ArrangePath(
	MultiPath* newPath,
	const MoveDef* moveDef,
	const float3& startPos,
	const float3& goalPos,
	CSolidObject* caller
) const {
	CPathFinderDef* pfDef = &newPath->peDef;

	// choose the PF or the PE depending on the projected 2D goal-distance
	// NOTE: this distance can be far smaller than the actual path length!
	// NOTE: take height difference into consideration for "special" cases
	// (unit at top of cliff, goal at bottom or vv.)
	const float heurGoalDist2D = pfDef->Heuristic(startPos.x / SQUARE_SIZE, startPos.z / SQUARE_SIZE, 1) + math::fabs(goalPos.y - startPos.y) / SQUARE_SIZE;
	const float searchDistances[] = {std::numeric_limits<float>::max(), MEDRES_SEARCH_DISTANCE, MAXRES_SEARCH_DISTANCE};

	// MAX_SEARCHED_NODES_PF is 65536, MAXRES_SEARCH_DISTANCE is 50 squares
	// the circular-constraint area therefore is PI*50*50 squares (i.e. 7854
	// rounded up to nearest integer) which means MAX_SEARCHED_NODES_*>>3 is
	// only slightly larger (8192) so the constraint has no purpose even for
	// max-res queries (!)
	assert(MAX_SEARCHED_NODES_PF <= 65536u);
	assert(MAXRES_SEARCH_DISTANCE <= 50.0f);

	constexpr unsigned int nodeLimits[] = {MAX_SEARCHED_NODES_PE >> 3, MAX_SEARCHED_NODES_PE >> 3, MAX_SEARCHED_NODES_PF >> 3};

	constexpr bool useConstraints[] = {false, false, false};
	constexpr bool allowRawSearch[] = {false, false, false};

	IPathFinder* pathFinders[] = {lowResPE, medResPE, maxResPF};
	IPath::Path* pathObjects[] = {&newPath->lowResPath, &newPath->medResPath, &newPath->maxResPath};

	IPath::SearchResult bestResult = IPath::Error;

#if 1

	unsigned int bestSearch = -1u; // index

	enum {
		PATH_LOW_RES = 0,
		PATH_MED_RES = 1,
		PATH_MAX_RES = 2,
	};

	{
		if (heurGoalDist2D <= (MAXRES_SEARCH_DISTANCE * modInfo.pfRawDistMult)) {
			pfDef->AllowRawPathSearch( true);
			pfDef->AllowDefPathSearch(false); // block default search

			// only the max-res CPathFinder implements DoRawSearch
			bestResult = pathFinders[PATH_MAX_RES]->GetPath(*moveDef, *pfDef, caller, startPos, *pathObjects[PATH_MAX_RES], nodeLimits[PATH_MAX_RES]);
			bestSearch = PATH_MAX_RES;

			pfDef->AllowRawPathSearch(false);
			pfDef->AllowDefPathSearch( true);
		}

		if (bestResult != IPath::Ok) {
			// try each pathfinder in order from MAX to LOW limited by distance,
			// with constraints disabled for all three since these break search
			// completeness (CPU usage is still limited by MAX_SEARCHED_NODES_*)
			for (int n = PATH_MAX_RES; n >= PATH_LOW_RES; n--) {
				// distance-limits are in ascending order
				if (heurGoalDist2D > searchDistances[n])
					continue;

				pfDef->DisableConstraint(!useConstraints[n]);
				pfDef->AllowRawPathSearch(allowRawSearch[n]);

				const IPath::SearchResult currResult = pathFinders[n]->GetPath(*moveDef, *pfDef, caller, startPos, *pathObjects[n], nodeLimits[n]);

				// note: GEQ s.t. MED-OK will be preferred over LOW-OK, etc
				if (currResult >= bestResult)
					continue;

				bestResult = currResult;
				bestSearch = n;

				if (currResult == IPath::Ok)
					break;
			}
		}
	}

	for (unsigned int n = PATH_LOW_RES; n <= PATH_MAX_RES; n++) {
		if (n != bestSearch) {
			pathObjects[n]->path.clear();
			pathObjects[n]->squares.clear();
		}
	}

	if (bestResult == IPath::Ok)
		return bestResult;

	// if we did not get a complete path with distance/search
	// constraints enabled, run a final unconstrained fallback
	// MED search (unconstrained MAX search is not useful with
	// current node limits and could kill performance without)
	if (heurGoalDist2D > searchDistances[PATH_MED_RES]) {
		pfDef->DisableConstraint(true);

		// we can only have a low-res result at this point
		pathObjects[PATH_LOW_RES]->path.clear();
		pathObjects[PATH_LOW_RES]->squares.clear();

		bestResult = std::min(bestResult, pathFinders[PATH_MED_RES]->GetPath(*moveDef, *pfDef, caller, startPos, *pathObjects[PATH_MED_RES], nodeLimits[PATH_MED_RES]));
	}

	return bestResult;


#else


	enum {
		PATH_MAX_RES = 0,
		PATH_MED_RES = 1,
		PATH_LOW_RES = 3
	};

	int origPathRes = PATH_LOW_RES;

	// first attempt - use ideal pathfinder (performance-wise)
	{
		if (heurGoalDist2D < MAXRES_SEARCH_DISTANCE) {
			origPathRes = PATH_MAX_RES;
		} else if (heurGoalDist2D < MEDRES_SEARCH_DISTANCE) {
			origPathRes = PATH_MED_RES;
		//} else {
		//	origPathRes = PATH_LOW_RES;
		}

		switch (origPathRes) {
			case PATH_MAX_RES: bestResult = maxResPF->GetPath(*moveDef, *pfDef, caller, startPos, newPath->maxResPath, nodeLimits[2]); break;
			case PATH_MED_RES: bestResult = medResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->medResPath, nodeLimits[1]); break;
			case PATH_LOW_RES: bestResult = lowResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->lowResPath, nodeLimits[0]); break;
		}

		if (bestResult == IPath::Ok) {
			return bestResult;
		}
	}

	// second attempt - try to reverse path
	/*{
		CCircularSearchConstraint reversedPfDef(goalPos, startPos, pfDef->sqGoalRadius, 7.0f, 8000);
		switch (pathres) {
			case PATH_MAX_RES: bestResult = maxResPF->GetPath(*moveDef, reversedPfDef, caller, goalPos, newPath->maxResPath, nodeLimits[2]); break;
			case PATH_MED_RES: bestResult = medResPE->GetPath(*moveDef, reversedPfDef, caller, goalPos, newPath->medResPath, nodeLimits[1]); break;
			case PATH_LOW_RES: bestResult = lowResPE->GetPath(*moveDef, reversedPfDef, caller, goalPos, newPath->lowResPath, nodeLimits[0]); break;
		}

		if (bestResult == IPath::Ok) {
			assert(false);

			float3 midPos;
			switch (pathres) {
				case PATH_MAX_RES: midPos = newPath->maxResPath.path.back(); break;
				case PATH_MED_RES: midPos = newPath->medResPath.path.back(); break;
				case PATH_LOW_RES: midPos = newPath->lowResPath.path.back(); break;
			}

			CCircularSearchConstraint midPfDef(startPos, midPos, pfDef->sqGoalRadius, 3.0f, 8000);
			bestResult = maxResPF->GetPath(*moveDef, midPfDef, caller, startPos, newPath->maxResPath, MAX_SEARCHED_NODES_PF >> 3);

			CCircularSearchConstraint restPfDef(midPos, goalPos, pfDef->sqGoalRadius, 7.0f, 8000);
			switch (pathres) {
				case PATH_MAX_RES:
				case PATH_MED_RES: bestResult = medResPE->GetPath(*moveDef, restPfDef, caller, startPos, newPath->medResPath, nodeLimits[1]); break;
				case PATH_LOW_RES: bestResult = lowResPE->GetPath(*moveDef, restPfDef, caller, startPos, newPath->lowResPath, nodeLimits[0]); break;
			}

			return bestResult;

		}
	}*/

	// third attempt - use better pathfinder
	{
		int advPathRes = origPathRes;
		int maxRes = (heurGoalDist2D < (MAXRES_SEARCH_DISTANCE * 2.0f)) ? PATH_MAX_RES : PATH_MED_RES;

		while (--advPathRes >= maxRes) {
			switch (advPathRes) {
				case PATH_MAX_RES: bestResult = maxResPF->GetPath(*moveDef, *pfDef, caller, startPos, newPath->maxResPath, nodeLimits[2]); break;
				case PATH_MED_RES: bestResult = medResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->medResPath, nodeLimits[1]); break;
				case PATH_LOW_RES: bestResult = lowResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->lowResPath, nodeLimits[0]); break;
			}

			if (bestResult == IPath::Ok) {
				return bestResult;
			}
		}
	}

	// fourth attempt - unconstrained search radius (performance heavy, esp. on max_res)
	pfDef->DisableConstraint(true);
	if (origPathRes > PATH_MAX_RES) {
		int advPathRes = origPathRes;
		int maxRes = PATH_MED_RES;

		while (--advPathRes >= maxRes) {
			switch (advPathRes) {
				case PATH_MAX_RES: bestResult = maxResPF->GetPath(*moveDef, *pfDef, caller, startPos, newPath->maxResPath, nodeLimits[2]); break;
				case PATH_MED_RES: bestResult = medResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->medResPath, nodeLimits[1]); break;
				case PATH_LOW_RES: bestResult = lowResPE->GetPath(*moveDef, *pfDef, caller, startPos, newPath->lowResPath, nodeLimits[0]); break;
			}

			if (bestResult == IPath::Ok) {
				return bestResult;
			}
		}
	}

	LOG_L(L_DEBUG, "PathManager: no path found");
	return bestResult;
	#endif
}


/*
Request a new multipath, store the result and return a handle-id to it.
*/
unsigned int CPathManager::RequestPath(
	CSolidObject* caller,
	const MoveDef* moveDef,
	float3 startPos,
	float3 goalPos,
	float goalRadius,
	bool synced
) {
	if (!IsFinalized())
		return 0;

	// in misc since it is called from many points
	SCOPED_TIMER("Misc::Path::RequestPath");
	startPos.ClampInBounds();
	goalPos.ClampInBounds();

	// Create an estimator definition.
	goalRadius = std::max<float>(goalRadius, PATH_NODE_SPACING * SQUARE_SIZE); //FIXME do on a per PE & PF level?
	assert(moveDef == moveDefHandler.GetMoveDefByPathType(moveDef->pathType));

	MultiPath newPath = MultiPath(moveDef, startPos, goalPos, goalRadius);
	newPath.finalGoal = goalPos;
	newPath.caller = caller;
	newPath.peDef.synced = synced;

	if (caller != nullptr)
		caller->UnBlock();

	const IPath::SearchResult result = ArrangePath(&newPath, moveDef, startPos, goalPos, caller);

	unsigned int pathID = 0;

	if (result != IPath::Error) {
		if (newPath.maxResPath.path.empty()) {
			if (result != IPath::CantGetCloser) {
				LowRes2MedRes(newPath, startPos, caller, synced);
				MedRes2MaxRes(newPath, startPos, caller, synced);
			} else {
				// add one dummy waypoint so that the calling MoveType
				// does not consider this request a failure, which can
				// happen when startPos is very close to goalPos
				//
				// otherwise, code relying on MoveType::progressState
				// (eg. BuilderCAI::MoveInBuildRange) would misbehave
				// (eg. reject build orders)
				newPath.maxResPath.path.push_back(startPos);
				newPath.maxResPath.squares.push_back(int2(startPos.x / SQUARE_SIZE, startPos.z / SQUARE_SIZE));
			}
		}

		FinalizePath(&newPath, startPos, goalPos, result == IPath::CantGetCloser);
		newPath.searchResult = result;
		pathID = Store(newPath);
	}

	if (caller != nullptr)
		caller->Block();

	return pathID;
}


// converts part of a med-res path into a max-res path
void CPathManager::MedRes2MaxRes(MultiPath& multiPath, const float3& startPos, const CSolidObject* owner, bool synced) const
{
	assert(IsFinalized());

	IPath::Path& maxResPath = multiPath.maxResPath;
	IPath::Path& medResPath = multiPath.medResPath;
	IPath::Path& lowResPath = multiPath.lowResPath;

	if (medResPath.path.empty())
		return;

	medResPath.path.pop_back();

	// remove med-res waypoints until the next one is far enough
	// note: this should normally never consume the entire path!
	while (!medResPath.path.empty() && startPos.SqDistance2D(medResPath.path.back()) < Square(MAXRES_SEARCH_DISTANCE_EXT)) {
		medResPath.path.pop_back();
	}

	// get the goal of the detailed search
	float3 goalPos = medResPath.pathGoal;
	if (!medResPath.path.empty())
		goalPos = medResPath.path.back();

	// define the search
	CCircularSearchConstraint rangedGoalDef(startPos, goalPos, 0.0f, 2.0f, Square(MAXRES_SEARCH_DISTANCE));
	rangedGoalDef.synced = synced;
	// TODO
	// rangedGoalDef.allowRawPath = true;

	// Perform the search.
	// If this is the final improvement of the path, then use the original goal.
	const auto& pfd = (medResPath.path.empty() && lowResPath.path.empty()) ? multiPath.peDef : rangedGoalDef;
	const IPath::SearchResult result = maxResPF->GetPath(*multiPath.moveDef, pfd, owner, startPos, maxResPath, MAX_SEARCHED_NODES_ON_REFINE);

	// If no refined path could be found, set goal as desired goal.
	if (result == IPath::CantGetCloser || result == IPath::Error) {
		maxResPath.pathGoal = goalPos;
	}
}

// converts part of a low-res path into a med-res path
void CPathManager::LowRes2MedRes(MultiPath& multiPath, const float3& startPos, const CSolidObject* owner, bool synced) const
{
	assert(IsFinalized());

	IPath::Path& medResPath = multiPath.medResPath;
	IPath::Path& lowResPath = multiPath.lowResPath;

	if (lowResPath.path.empty())
		return;

	lowResPath.path.pop_back();

	// remove low-res waypoints until the next one is far enough
	// note: this should normally never consume the entire path!
	while (!lowResPath.path.empty() && startPos.SqDistance2D(lowResPath.path.back()) < Square(MEDRES_SEARCH_DISTANCE_EXT)) {
		lowResPath.path.pop_back();
	}

	// get the goal of the detailed search
	float3 goalPos = lowResPath.pathGoal;
	if (!lowResPath.path.empty())
		goalPos = lowResPath.path.back();

	// define the search
	CCircularSearchConstraint rangedGoalDef(startPos, goalPos, 0.0f, 2.0f, Square(MEDRES_SEARCH_DISTANCE));
	rangedGoalDef.synced = synced;

	// Perform the search.
	// If there is no low-res path left, use original goal.
	const auto& pfd = (lowResPath.path.empty()) ? multiPath.peDef : rangedGoalDef;
	const IPath::SearchResult result = medResPE->GetPath(*multiPath.moveDef, pfd, owner, startPos, medResPath, MAX_SEARCHED_NODES_ON_REFINE);

	// If no refined path could be found, set goal as desired goal.
	if (result == IPath::CantGetCloser || result == IPath::Error) {
		medResPath.pathGoal = goalPos;
	}
}


/*
Removes and return the next waypoint in the multipath corresponding to given id.
*/
float3 CPathManager::NextWayPoint(
	const CSolidObject* owner,
	unsigned int pathID,
	unsigned int numRetries,
	float3 callerPos,
	float radius,
	bool synced
) {
	// in misc since it is called from many points
	SCOPED_TIMER("Misc::Path::NextWayPoint");

	const float3 noPathPoint = -XZVector;

	if (!IsFinalized())
		return noPathPoint;

	// 0 indicates the null-path ID
	if (pathID == 0)
		return noPathPoint;

	// find corresponding multipath entry
	MultiPath* multiPath = GetMultiPath(pathID);

	if (multiPath == nullptr)
		return noPathPoint;

	if (numRetries > MAX_PATH_REFINEMENT_DEPTH)
		return (multiPath->finalGoal);

	IPath::Path& maxResPath = multiPath->maxResPath;
	IPath::Path& medResPath = multiPath->medResPath;
	IPath::Path& lowResPath = multiPath->lowResPath;

	if ((callerPos == ZeroVector) && !maxResPath.path.empty())
		callerPos = maxResPath.path.back();

	assert(multiPath->peDef.synced == synced);

	#define EXTEND_PATH_POINTS(curResPts, nxtResPts, dist) ((!curResPts.empty() && (curResPts.back()).SqDistance2D(callerPos) < Square((dist))) || nxtResPts.size() <= 2)
	const bool extendMaxResPath = EXTEND_PATH_POINTS(medResPath.path, maxResPath.path, MAXRES_SEARCH_DISTANCE_EXT);
	const bool extendMedResPath = EXTEND_PATH_POINTS(lowResPath.path, medResPath.path, MEDRES_SEARCH_DISTANCE_EXT);
	#undef EXTEND_PATH_POINTS

	// check whether the max-res path needs extending through
	// recursive refinement of its lower-resolution segments
	// if so, check if the med-res path also needs extending
	if (extendMaxResPath) {
		if (multiPath->caller != nullptr)
			multiPath->caller->UnBlock();

		if (extendMedResPath)
			LowRes2MedRes(*multiPath, callerPos, owner, synced);

		MedRes2MaxRes(*multiPath, callerPos, owner, synced);

		if (multiPath->caller != nullptr)
			multiPath->caller->Block();

		FinalizePath(multiPath, callerPos, multiPath->finalGoal, multiPath->searchResult == IPath::CantGetCloser);
	}

	float3 waypoint = noPathPoint;

	do {
		// eat waypoints from the max-res path until we
		// find one that lies outside the search-radius
		// or equals the goal
		//
		// if this is not possible, then either we are
		// at the goal OR the path could not reach all
		// the way to it (ie. a GoalOutOfRange result)
		// OR we are stuck on an impassable square
		if (maxResPath.path.empty()) {
			if (lowResPath.path.empty() && medResPath.path.empty()) {
				if (multiPath->searchResult == IPath::Ok)
					waypoint = multiPath->finalGoal;

				// [else]
				// reached in the CantGetCloser case for any max-res searches
				// that start within their goal radius (ie. have no waypoints)
				// RequestPath always puts startPos into maxResPath to handle
				// this so waypoint will have been set to it (during previous
				// iteration) if we end up here
			} else {
				waypoint = NextWayPoint(owner, pathID, numRetries + 1, callerPos, radius, synced);
			}

			break;
		} else {
			waypoint = maxResPath.path.back();
			maxResPath.path.pop_back();
		}
	} while ((callerPos.SqDistance2D(waypoint) < Square(radius)) && (waypoint != maxResPath.pathGoal));

	// y=0 indicates this is not a temporary waypoint
	// (the default PFS does not queue path-requests)
	return (waypoint * XZVector);
}


// Tells estimators about changes in or on the map.
void CPathManager::TerrainChange(unsigned int x1, unsigned int z1, unsigned int x2, unsigned int z2, unsigned int /*type*/) {
	if (!IsFinalized())
		return;

	medResPE->MapChanged(x1, z1, x2, z2);

	// low-res PE will be informed via (medRes)PE::Update
	if (true && medResPE->nextPathEstimator != nullptr)
		return;

	lowResPE->MapChanged(x1, z1, x2, z2);
}



void CPathManager::Update()
{
	SCOPED_TIMER("Sim::Path");
	assert(IsFinalized());

	pathFlowMap->Update();
	pathHeatMap->Update();

	medResPE->Update();
	lowResPE->Update();
}

// used to deposit heat on the heat-map as a unit moves along its path
void CPathManager::UpdatePath(const CSolidObject* owner, unsigned int pathID)
{
	assert(IsFinalized());

	pathFlowMap->AddFlow(owner);
	pathHeatMap->AddHeat(owner, this, pathID);
}



// get the waypoints in world-coordinates
void CPathManager::GetDetailedPath(unsigned pathID, std::vector<float3>& points) const
{
	const MultiPath* multiPath = GetMultiPathConst(pathID);

	if (multiPath == nullptr) {
		points.clear();
		return;
	}

	const IPath::Path& path = multiPath->maxResPath;
	const IPath::path_list_type& maxResPoints = path.path;

	points.clear();
	points.reserve(maxResPoints.size());

	for (auto pvi = maxResPoints.rbegin(); pvi != maxResPoints.rend(); ++pvi) {
		points.push_back(*pvi);
	}
}

void CPathManager::GetDetailedPathSquares(unsigned pathID, std::vector<int2>& squares) const
{
	const MultiPath* multiPath = GetMultiPathConst(pathID);

	if (multiPath == nullptr) {
		squares.clear();
		return;
	}

	const IPath::Path& path = multiPath->maxResPath;
	const IPath::square_list_type& maxResSquares = path.squares;

	squares.clear();
	squares.reserve(maxResSquares.size());

	for (auto pvi = maxResSquares.rbegin(); pvi != maxResSquares.rend(); ++pvi) {
		squares.push_back(*pvi);
	}
}



void CPathManager::GetPathWayPoints(
	unsigned int pathID,
	std::vector<float3>& points,
	std::vector<int>& starts
) const {
	points.clear();
	starts.clear();

	const MultiPath* multiPath = GetMultiPathConst(pathID);

	if (multiPath == nullptr)
		return;

	const IPath::path_list_type& maxResPoints = multiPath->maxResPath.path;
	const IPath::path_list_type& medResPoints = multiPath->medResPath.path;
	const IPath::path_list_type& lowResPoints = multiPath->lowResPath.path;

	points.reserve(maxResPoints.size() + medResPoints.size() + lowResPoints.size());
	starts.reserve(3);
	starts.push_back(points.size());

	for (IPath::path_list_type::const_reverse_iterator pvi = maxResPoints.rbegin(); pvi != maxResPoints.rend(); ++pvi) {
		points.push_back(*pvi);
	}

	starts.push_back(points.size());

	for (IPath::path_list_type::const_reverse_iterator pvi = medResPoints.rbegin(); pvi != medResPoints.rend(); ++pvi) {
		points.push_back(*pvi);
	}

	starts.push_back(points.size());

	for (IPath::path_list_type::const_reverse_iterator pvi = lowResPoints.rbegin(); pvi != lowResPoints.rend(); ++pvi) {
		points.push_back(*pvi);
	}
}



bool CPathManager::SetNodeExtraCost(unsigned int x, unsigned int z, float cost, bool synced) {
	if (!IsFinalized())
		return 0.0f;

	if (x >= mapDims.mapx) { return false; }
	if (z >= mapDims.mapy) { return false; }

	PathNodeStateBuffer& maxResBuf = maxResPF->GetNodeStateBuffer();
	PathNodeStateBuffer& medResBuf = medResPE->GetNodeStateBuffer();
	PathNodeStateBuffer& lowResBuf = lowResPE->GetNodeStateBuffer();

	maxResBuf.SetNodeExtraCost(x, z, cost, synced);
	medResBuf.SetNodeExtraCost(x, z, cost, synced);
	lowResBuf.SetNodeExtraCost(x, z, cost, synced);
	return true;
}

bool CPathManager::SetNodeExtraCosts(const float* costs, unsigned int sizex, unsigned int sizez, bool synced) {
	if (!IsFinalized())
		return 0.0f;

	if (sizex < 1 || sizex > mapDims.mapx) { return false; }
	if (sizez < 1 || sizez > mapDims.mapy) { return false; }

	PathNodeStateBuffer& maxResBuf = maxResPF->GetNodeStateBuffer();
	PathNodeStateBuffer& medResBuf = medResPE->GetNodeStateBuffer();
	PathNodeStateBuffer& lowResBuf = lowResPE->GetNodeStateBuffer();

	// make all buffers share the same cost-overlay
	maxResBuf.SetNodeExtraCosts(costs, sizex, sizez, synced);
	medResBuf.SetNodeExtraCosts(costs, sizex, sizez, synced);
	lowResBuf.SetNodeExtraCosts(costs, sizex, sizez, synced);
	return true;
}

float CPathManager::GetNodeExtraCost(unsigned int x, unsigned int z, bool synced) const {
	if (!IsFinalized())
		return 0.0f;

	if (x >= mapDims.mapx) { return 0.0f; }
	if (z >= mapDims.mapy) { return 0.0f; }

	const PathNodeStateBuffer& maxResBuf = maxResPF->GetNodeStateBuffer();
	const float cost = maxResBuf.GetNodeExtraCost(x, z, synced);
	return cost;
}

const float* CPathManager::GetNodeExtraCosts(bool synced) const {
	if (!IsFinalized())
		return nullptr;

	const PathNodeStateBuffer& buf = maxResPF->GetNodeStateBuffer();
	const float* costs = buf.GetNodeExtraCosts(synced);
	return costs;
}

int2 CPathManager::GetNumQueuedUpdates() const {
	int2 data;

	if (IsFinalized()) {
		data.x = medResPE->updatedBlocks.size();
		data.y = lowResPE->updatedBlocks.size();
	}

	return data;
}