File: testSpringTime.cpp

package info (click to toggle)
spring 106.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 55,260 kB
  • sloc: cpp: 543,946; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (296 lines) | stat: -rw-r--r-- 8,988 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#define CATCH_CONFIG_MAIN
#include "lib/catch.hpp"

#include "System/TimeProfiler.h"
#include "System/Misc/SpringTime.h"
#include "System/Log/ILog.h"
#include "System/Misc/SpringTime.h"

#include <cmath>
#include <cstdint>

#include <chrono>
#include <thread>

InitSpringTime ist;

static constexpr int testRuns = 1000000;


#include <chrono>
struct Cpp11ChronoClock {
	static inline float ToMs() { return 1.0f / 1e6; }
	static inline std::string GetName() { return "StdChrono"; }
	static inline int64_t Get() {
		return std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now().time_since_epoch()).count();
	}
};




#if defined(__USE_GNU) && !defined(_WIN32)
#include <time.h>
struct PosixClockMT {
	static inline float ToMs() { return 1.0f / 1e6; }
	static inline std::string GetName() { return "clock_gettime(MT)"; }
	static inline int64_t Get() {
		timespec t1;

	#if defined(CLOCK_MONOTONIC_RAW)
		clock_gettime(CLOCK_MONOTONIC_RAW, &t1);
	#else
		clock_gettime(CLOCK_MONOTONIC, &t1);
	#endif
		return t1.tv_nsec + int64_t(t1.tv_sec) * int64_t(1e9);
	}
};

struct PosixClockRT {
	static inline float ToMs() { return 1.0f / 1e6; }
	static inline std::string GetName() { return "clock_gettime(RT)"; }
	static inline int64_t Get() {
		timespec t1;
		clock_gettime(CLOCK_REALTIME, &t1);
		return t1.tv_nsec + int64_t(t1.tv_sec) * int64_t(1e9);
	}
};
#endif



struct SpringClock {
	static inline float ToMs() { return 1.0f / 1e6; }
	static inline std::string GetName() { return "SpringTime"; }
	static inline int64_t Get() {
		return spring_time::gettime().toNanoSecsi();
	}
};


template<class Clock>
struct TestProcessor {
	static inline float Run()
	{
		const auto startTestTime = spring_time::gettime();

		int64_t lastTick = Clock::Get();
		int64_t maxTick = 0;
		int64_t minTick = 1e9;
		int64_t lowTick = 1e9;
		float avgTick = 0;

		for (int i=0; i < testRuns; ++i) {
			int64_t curTick = Clock::Get();
			int64_t tick = curTick - lastTick;
			maxTick = std::max<int64_t>(tick, maxTick);
			minTick = std::min<int64_t>(tick, minTick);
			avgTick = float(i * avgTick + tick) / (i + 1);
			if (tick > 0) lowTick = std::min<int64_t>(tick, lowTick);
			lastTick = curTick;
		}

		float maxMsTick = maxTick * Clock::ToMs();
		float minMsTick = std::max<int64_t>(minTick, 1LL) * Clock::ToMs();
		float avgMsTick = std::max<int64_t>(avgTick, 1.0f) * Clock::ToMs();
		float minNonNullMsTick = lowTick * Clock::ToMs();

		LOG("[%17s] maxTick: %3.6fms minTick: %3.6fms avgTick: %3.6fms minNonNullTick: %3.6fms totalTestRuntime: %4.0fms", Clock::GetName().c_str(), maxMsTick, minMsTick, avgMsTick, minNonNullMsTick, (spring_time::gettime() - startTestTime).toMilliSecsf());
		return avgMsTick;
	}
};


TEST_CASE("ClockQualityCheck")
{
	LOG("Clock Precision Test");
	if (!std::chrono::high_resolution_clock::is_steady) {
		WARN("std::chrono::high_resolution_clock::is_steady is false");
	}

	float bestAvg = 1e9;

#if defined(__USE_GNU) && !defined(_WIN32)
	bestAvg = std::min(bestAvg, TestProcessor<PosixClockMT>::Run());
	bestAvg = std::min(bestAvg, TestProcessor<PosixClockRT>::Run());
#endif

	bestAvg = std::min(bestAvg, TestProcessor<Cpp11ChronoClock>::Run());

	const float springAvg = TestProcessor<SpringClock>::Run();

	bestAvg = std::min(bestAvg, springAvg);

	const float diff = std::abs(springAvg - bestAvg);
	if (diff >= 3.0f * bestAvg) {
		LOG_L(L_ERROR, "Clockquality is bad: %f, running inside a VM?", diff);
	}


	// check min precision range
	{
		const spring_time d = spring_time::fromNanoSecs(1e3); // 1us
		CHECK( std::abs(1000.0f * d.toSecsf() - d.toMilliSecsf()) < d.toMilliSecsf() );
		CHECK( d.toSecsf() > 0.0f );
	}

	// check max precision range
	{
		static const float DAYS_TO_SECS = 60*60*24;
		static const float SECS_TO_MS   = 1000;
		const spring_time d = spring_time(4 * DAYS_TO_SECS * SECS_TO_MS);
		CHECK( std::abs(d.toSecsf() - (4 * DAYS_TO_SECS)) < 1.0f);
		CHECK( d.toSecsf() > 0.0f ); // else there is a overflow!
	}

	// check toMilliSecsf precision range
	for (int i = 0; i<16; ++i) {
		const float f10ei = std::pow(10.0f, i);
		if (i > 12) {
			if (std::abs(spring_time(f10ei).toMilliSecsf() - f10ei) >= 1.0f) {
				//WARN("std::abs(spring_time(f10ei).toMilliSecsf() - f10ei) >= 1.0f");
			}
		} else {
			CHECK( std::abs(spring_time(f10ei).toMilliSecsf() - f10ei) < 1.0f);
		}
	}

	// check toMilliSecsf behind dot precision range
	for (int i = 0; i>=-6; --i) {
		const float f10ei = std::pow(10.0f, i);
		CHECK( std::abs(spring_time(f10ei).toMilliSecsf()) > 0.0f);
	}

	// check toSecsf precision range
	for (int i = 0; i<12; ++i) {
		const float f10ei = std::pow(10.0f, i);
		if (i > 7) {
			// everything above 10e7 seconds might be unprecise
			if (std::abs(spring_time::fromSecs(f10ei).toSecsf() - f10ei) >= 1.0f) {
				//WARN("std::abs(spring_time::fromSecs(f10ei).toSecsf() - f10ei) >= 1.0f");
			}
		} else {
			// 10e7 seconds should be minimum in precision range
			CHECK( std::abs(spring_time::fromSecs(f10ei).toSecsf() - f10ei) < 1.0f);
		}
	}

	// check toSecsf behind dot precision range
	for (int i = 0; i>=-9; --i) {
		const float f10ei = std::pow(10.0f, i);
		CHECK( std::abs(spring_time(f10ei * 1000.f).toSecsf()) > 0.0f);
	}

	// check toSecs precision range
	int64_t i10ei = 10;
	for (int i = 1; i<10; ++i) {
		CHECK( std::abs(spring_time::fromSecs(i10ei).toSecsi() - i10ei) < 1.0f);
		i10ei *= 10LL;
	}

	CHECK( std::abs(spring_time(1).toMilliSecsf() - 1.0f) < 0.1f);
	CHECK( std::abs(spring_time(1e3).toSecsf() - 1e0) < 0.1f);
	CHECK( std::abs(spring_time(1e6).toSecsf() - 1e3) < 0.1f);
	CHECK( std::abs(spring_time(1e9).toSecsf() - 1e6) < 0.1f);

	spring_clock::PopTickRate();
}



#if (!defined(__MINGW32__) && defined(_GLIBCXX_USE_SCHED_YIELD)) //last one is a gcc 4.7 bug
	void sleep_stdchrono(int time) { std::this_thread::sleep_for(std::chrono::nanoseconds(time)); }
	void yield_chrono(int time) { std::this_thread::yield(); }
#endif

void sleep_spring(int time) { spring_sleep(spring_msecs(time)); }
void sleep_spring2(int time) { spring_sleep(spring_time::fromNanoSecs(time)); }

#ifdef _WIN32
	#include <windows.h>
	void sleep_windows(int time)  { Sleep(time); }
#else
	#include <time.h>
	#include <unistd.h>
	void sleep_posix_msec(int time)  { usleep(time); }
	void sleep_posix_nanosec(int time)  { struct timespec tim, tim2; tim.tv_sec = 0; tim.tv_nsec = time; if (nanosleep(&tim, &tim2) != 0) nanosleep(&tim2, nullptr); }
#endif


void BenchmarkSleepFnc(const std::string& name, void (*sleep)(int time), const int runs, const float toMilliSecondsScale)
{
	// waste a few cycles to push the cpu to higher frequency states
	for (auto spinStopTime = spring_gettime() + spring_secs(2); spring_gettime() < spinStopTime; ) {
	}

	spring_time t = spring_gettime();
	spring_time tmin, tmax;
	float tavg = 0;

	// check lowest possible sleep tick
	for (int i=0; i<runs; ++i) {
		sleep(0);

		spring_time diff = spring_gettime() - t;
		if ((diff > tmax) || !spring_istime(tmax)) tmax = diff;
		if ((diff < tmin) || !spring_istime(tmin)) tmin = diff;
		tavg = float(i * tavg + diff.toNanoSecsi()) / (i + 1);
		t = spring_gettime();
	}

	// check error in sleeping times
	spring_time emin, emax;
	float eavg = 0;
	if (toMilliSecondsScale != 0) {
		for (int i=0; i<100; ++i) {
			const auto sleepTime = (rand() % 50) * 0.1f + 2; // 2..7ms

			t = spring_gettime();
			sleep(sleepTime * toMilliSecondsScale);
			spring_time diff = (spring_gettime() - t) - spring_msecs(sleepTime);

			if ((diff > emax) || !emax.isDuration()) emax = diff;
			if ((diff < emin) || !emin.isDuration()) emin = diff;
			eavg = float(i * eavg + std::abs(diff.toNanoSecsf())) / (i + 1);
		}
	}

	LOG("[%35s] accuracy:={ err: %+.4fms %+.4fms erravg: %.4fms } min sleep time:={ min: %.6fms avg: %.6fms max: %.6fms }", name.c_str(), emin.toMilliSecsf(), emax.toMilliSecsf(), eavg * 1e-6, tmin.toMilliSecsf(), tavg * 1e-6, tmax.toMilliSecsf());
}

TEST_CASE("ThreadSleepTime")
{
	LOG("Sleep() Precision Test");

#if (!defined(__MINGW32__) && defined(_GLIBCXX_USE_SCHED_YIELD)) //last one is a gcc 4.7 bug
	BenchmarkSleepFnc("sleep_stdchrono", &sleep_stdchrono, 500, 1e6);
	BenchmarkSleepFnc("yield_chrono", &yield_chrono, 500000, 0);
#endif
#ifdef _WIN32
	BenchmarkSleepFnc("sleep_windows", &sleep_windows, 500, 1e0);
#else
	BenchmarkSleepFnc("sleep_posix_msec", &sleep_posix_msec, 500, 1e0);
	BenchmarkSleepFnc("sleep_posix_nanosec", &sleep_posix_nanosec, 500, 1e6);
#endif
	BenchmarkSleepFnc("sleep_spring", &sleep_spring, 500, 1e0);
	BenchmarkSleepFnc("sleep_spring2", &sleep_spring2, 500, 1e6);
}


TEST_CASE("Timer")
{

	TimerNameRegistrar("test");
	ScopedTimer t2(hashString("test"));
	ScopedOnceTimer t("test");
	sleep_spring(500);

	CHECK(t2.GetDuration().toMilliSecsi() >= 450);
	CHECK(t.GetDuration().toMilliSecsi() >= 450);

	CHECK(t2.GetDuration().toMilliSecsi() <= 550);
	CHECK(t.GetDuration().toMilliSecsi() <= 550);
}