1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
#pragma once
#include <stddef.h>
#include <stdio.h>
namespace assembler {
typedef unsigned char byte;
struct Register;
struct MemAddress;
enum RegCode : byte {
EAX = 0,
ECX = 1,
EDX = 2,
EBX = 3,
ESP = 4, SIB = 4,
EBP = 5, ADDR = 5,
ESI = 6,
EDI = 7,
R8 = 8,
R9 = 9,
R10 = 10,
R12 = 12,
R13 = 13,
R14 = 14,
R15 = 15,
//R11 is supervolatile. Can change in between
//virtual asm ops (used as a temporary), so be careful
//with using it.
R11 = 11,
//XMM registers have unique numbers so we can recognize them
XMM0 = 16,
XMM1 = 17,
XMM2 = 18,
XMM3 = 19,
XMM4 = 20,
XMM5 = 21,
XMM6 = 22,
XMM7 = 23,
XMM8 = 24,
XMM9 = 25,
XMM10 = 26,
XMM11 = 27,
XMM12 = 28,
XMM13 = 29,
XMM14 = 30,
XMM15 = 31,
NONE = 0,
};
//Floating Point Register codes representing the stack registers on the FPU
// The top of the stack is always FPU_0
enum FloatReg : byte {
FPU_0 = 0,
FPU_1 = 1,
FPU_2 = 2,
FPU_3 = 3,
FPU_4 = 4,
FPU_5 = 5,
FPU_6 = 6,
FPU_7 = 7,
};
enum JumpType {
Overflow,
NotOverflow,
Below, Carry = Below,
NotBelow, NotCarry = NotBelow,
Equal, Zero = Equal,
NotEqual, NotZero = NotEqual,
NotAbove,
Above,
Sign,
NotSign,
Parity,
NotParity,
Less,
GreaterOrEqual,
LessOrEqual,
Greater,
Jump,
JumpTypeCount
};
//Handles thread safety for the JIT
struct CriticalSection {
void* pLock;
void enter();
void leave();
CriticalSection();
~CriticalSection();
};
struct AddrPrefix {
MemAddress& adr;
bool defLong;
unsigned char further;
AddrPrefix(MemAddress& Adr, bool DefLong, unsigned char Further)
: adr(Adr), defLong(DefLong), further(Further) {
}
};
struct RegPrefix {
Register& reg;
unsigned short other;
bool defLong;
RegPrefix(Register& Reg, unsigned short Other, bool DefLong)
: reg(Reg), other(Other), defLong(DefLong) {
}
};
//Stores information about the code page
// Generates an executable page in memory when created
// Deletes the asssociated page when deleted
//Implementation in virtual_asm_<operating system>.cpp (e.g. virtual_asm_windows.cpp)
struct CodePage {
void* page;
unsigned int size, used, references;
bool final;
CodePage(unsigned int Size, void* requestedStart = 0);
~CodePage();
void grab();
void drop();
//Call finalize when done writing to the code page to guarantee that it can be executed
//No more writing may be done to the allocated pages
void finalize();
//Returns the pointer to the first currently unused chunk of the page
template<class T>
T getFunctionPointer() {
return reinterpret_cast<T>((byte*)page+used);
}
byte* getActivePage() const {
return (byte*)page+used;
}
//Marks bytes as used;
//future calls to getFunctionPointer() will not reference the location that is being marked as used
void markBytesUsed(unsigned int count) {
used += count;
}
//Marks bytes up to <address> as used
void markUsedAddress(void* address) {
unsigned newUsed = (unsigned)((byte*)address - (byte*)page);
if(newUsed > used && newUsed <= size)
used = newUsed;
}
//Returns the number of bytes not yet allocated to a function
unsigned int getFreeSize() const {
return size-used;
}
//Returns the smallest page (in bytes) that can be allocated by a code page (Sizes other than multiples of this size allocate an extra page)
static unsigned int getMinimumPageSize();
private:
CodePage() {}
};
//Stores the code pointer and provides access to various processor-level operations
// To work with the processor, create a set of 'Register' instances, each taking the RegCode of the associated register (e.g. Register eax(cpu, EAX))
//Implementation in virtual_asm_<processor instruction set>.cpp (e.g. virtual_asm_x86.cpp)
struct Processor {
//Pointer to the location for the next opcode
byte* op;
byte* pageStart;
//The current mode of operation, in bits
// e.g. 32 bits for x86, indicating that operations should treat addresses as if they were unsigned integers
unsigned bitMode, lastBitMode;
//The number of bytes currently on the stack that we are responsible for
unsigned stackDepth;
//Reserved jump space
unsigned jumpSpace;
byte* jumpPtr;
//Initializes the processor to point to the active page of the code page
//Optionally takes a bitMode override (defaults to the same bitMode as the exe)
Processor(CodePage& codePage, unsigned defaultBitMode = sizeof(void*)*8 );
//Creates a jump to the new code page, and marks the current address as used on the old code page
//Updates output pointer to the new code page's active page
void migrate(CodePage& prevPage, CodePage& newPage);
//Changes the current bitMode, and stores the previous bitMode
void setBitMode(unsigned bits) {
lastBitMode = bitMode;
bitMode = bits;
}
//Restores the previous bitMode
void resetBitMode() {
bitMode = lastBitMode;
}
//Returns the alignment of the stack (number of bytes a push increments esp)
static unsigned pushSize();
//Pushes data to the opcode output
template<class T>
Processor& operator<<(T b) {
*(T*)op = b; op += sizeof(T);
return *this;
}
//Pushes bytes representing a memory address to the opcode output
template<class T>
Processor& operator<<(MemAddress addr);
//Pushes bytes representing a prefix
template<class T>
Processor& operator<<(AddrPrefix pr);
template<class T>
Processor& operator<<(RegPrefix pr);
//Calls the function, passing the arguments specified by 'args'
//args is a string like "rrcmrm" which specifies arguments as sourced by a Register*, MemAddres*, or a constant
//EBP is invalid during the call
void call_cdecl(void* func, const char* args, va_list ap);
void call_cdecl(void* func, const char* args, ...);
//Use call() in between these to set up a call with an arbitrary function
unsigned call_cdecl_args(const char* args, ...);
unsigned call_cdecl_args(const char* args, va_list ap);
unsigned call_thiscall_args(Register* obj, const char* args, ...);
unsigned call_thiscall_args(Register* obj, const char* args, va_list ap);
//Prepares for a call to manual call to a cdecl function (Do not use with call_cdecl)
// Use before pushing arguments
// Invalidates EBP until call_cdecl_end()
void call_cdecl_prep(unsigned argBytes);
//Ends a manual call to a cdecl function (Do not use with call_cdecl)
// Use after returning from the function
void call_cdecl_end(unsigned argBytes, bool returnPointer = false);
//Note: stdcall is like cdecl, but does not use cdecl_end
//Calls the function, passing the arguments specified by 'args'
//args is a string like "rrcmrm" which specifies arguments as sourced by a Register*, MemAddres*, or a constant
//EBP is invalid during the call
void call_stdcall(void* func, const char* args, ...);
//To call a thiscall:
// cpu.call_thiscall_prep(total argument size)
// cpu.push(arguments)
// cpu.call_thiscall_this(source of 'this' pointer)
// cpu.call(function)
// cpu.call_thiscall_end(total argument size)
void call_thiscall_prep(unsigned argBytes);
void call_thiscall_this(MemAddress address);
void call_thiscall_this(Register& reg);
void call_thiscall_this_mem(MemAddress address, Register& memreg);
void call_thiscall_this_mem(Register& reg, Register& memreg);
void call_thiscall_end(unsigned argBytes, bool returnPointer = false);
//Calls a function (push code pointer, jump to function)
void call(Register& reg);
void call(void* func);
//Pushes a constant value onto the stack (Pushes are always pushSize() large, values beyond this size are an error)
void push(size_t value);
//Pops <count> times (Pops are always pushSize() large)
void pop(unsigned int count);
//Pushes the value of <reg> onto the stack
void push(Register& reg);
//Pops the alue of <reg> from the stack
void pop(Register& reg);
//Get a register corresponding to an argument on 64-bit calling convention
unsigned maxIntArgs64();
unsigned maxFloatArgs64();
bool isIntArg64Register(unsigned char number, unsigned char arg);
bool isFloatArg64Register(unsigned char number, unsigned char arg);
Register intArg64(unsigned char number, unsigned char arg);
Register floatArg64(unsigned char number, unsigned char arg);
Register intArg64(unsigned char number, unsigned char arg, Register defaultReg);
Register floatArg64(unsigned char number, unsigned char arg, Register defaultReg);
Register floatReturn64();
Register intReturn64();
//Pushes the memory at <address> onto the stack (Pushes are always pushSize() large, pushing larger values invokes multiple pushes)
void push(MemAddress address);
//Pops the value on the stack to the memory at <address> (Pops are always pushSize() large, popping larger values invokes multiple pops)
void pop(MemAddress address);
//Prepares a short jump (fewer than approx. 120 bytes in either direction)
// Pass the return to a matching end_short_jump
void* prep_short_jump(JumpType type);
//Ends a short jump
void end_short_jump(void* p);
//Prepares a large jump (can jump to any location)
// Pass the return to a matching end_long_jump
void* prep_long_jump(JumpType type);
//Ends a large jump
void end_long_jump(void* p);
//Jumps to <dest>
void jump(JumpType type, volatile byte* dest);
//Jumps to the address in <reg>
void jump(Register& reg);
//Decrements ecx and jumps if it becomes 0; Optionally conditionally jumps based on a Zero/NotZero test
void loop(volatile byte* dest, JumpType type = Jump);
//Copies from *esi to *edi, and adjusts them both by the data size according to the direction flag
void string_copy(unsigned size);
//Sets direction flag for string copy
void setDirFlag(bool forward);
//Returns from a function (pop code pointer, jump there)
void ret();
//Triggers a debug break
void debug_interrupt();
private:
Processor() {}
};
//Provides access to the floating point unit's state
//Implementation in virtual_asm_<processor instruction set>.cpp (e.g. virtual_asm_x86.cpp)
struct FloatingPointUnit {
Processor& cpu;
FloatingPointUnit(Processor& CPU);
//Clears the FPU's state and registers
void init();
//Negates FPU_0
void negate();
//Pushes
void load_const_0();
void load_const_1();
//FPU_1 becomes FPU_0 (Pops the fpu stack)
void pop();
//Exchanges contents of FPU_n and FPU_0
void exchange(FloatReg floatReg);
//Compares FPU_0 to floatReg, setting the CPU's flags according to the values' relation
// Optionally pops the fpu stack
void compare_toCPU(FloatReg floatReg, bool pop = true);
//Pushes the specified data type stored at <address> onto the FPU stack (becomes FPU_0)
void load_float(MemAddress address);
void load_dword(MemAddress address);
void load_qword(MemAddress address);
void load_double(MemAddress address);
//Stores the value on FPU_0 to <address> according to the data type
// Optionally pops the fpu stack
void store_float(MemAddress address, bool pop = true);
void store_dword(MemAddress address, bool pop = true);
void store_double(MemAddress address, bool pop = true);
//Control words
void store_control_word(MemAddress address);
void load_control_word(MemAddress address);
//Effect: FPU_0 -= <reg>
void operator-=(FloatReg reg);
//Effect: FPU_0 += *(float*)address
void add_float(MemAddress address);
//Effect: FPU_0 -= *(float*)address
void sub_float(MemAddress address);
//Effect: FPU_0 *= *(float*)address
void mult_float(MemAddress address);
//Effect: FPU_0 /= *(float*)address
void div_float(MemAddress address);
//Effect: FPU_0 += *(double*)address
void add_double(MemAddress address);
void add_double(FloatReg reg, bool pop = true);
//Effect: FPU_0 -= *(double*)address
// If Reversed: FPU_0 = *(double*)address - FPU_0
void sub_double(MemAddress address, bool reversed = false);
void sub_double(FloatReg reg, bool reversed = false, bool pop = true);
//Effect: FPU_0 *= *(double*)address
void mult_double(MemAddress address);
void mult_double(FloatReg reg, bool pop = true);
//Effect: FPU_0 /= *(double*)address
// If Reversed: FPU_0 = *(double*)address / FPU_0
void div_double(MemAddress address, bool reversed = false);
void div_double(FloatReg reg, bool reversed = false, bool pop = true);
};
//Temporary struct that represents an addition to a memory address, with optional scaling
struct ScaledIndex {
RegCode reg;
unsigned char scaleFactor;
ScaledIndex(RegCode Reg, unsigned char Scale) : reg(Reg), scaleFactor(Scale) {}
};
//Temporary struct that stores data necessary for memory access
// Provides operations that can be performed on a memory address
//Implementation in virtual_asm_<processor instruction set>.cpp (e.g. virtual_asm_x86.cpp)
struct MemAddress {
Processor& cpu;
void* absolute_address;
int offset;
unsigned bitMode;
RegCode code;
RegCode scaleReg;
unsigned char other;
unsigned char scaleFactor;
bool Float;
bool Signed;
MemAddress(Processor& CPU, void* address);
MemAddress(Processor& CPU, RegCode Code);
MemAddress(Processor& CPU, RegCode Code, int Offset);
MemAddress operator+(ScaledIndex scale);
MemAddress operator+(int Offset);
MemAddress operator-(int Offset);
void operator++();
void operator--();
void operator-();
void operator~();
void operator+=(unsigned int amount);
void operator-=(unsigned int amount);
void operator=(unsigned int value);
void operator=(void* pointer);
void operator=(Register fromReg);
void operator&=(unsigned int value);
void operator|=(unsigned int value);
//Copies memory using an intermediate register
void direct_copy(MemAddress address, Register& intermediate);
AddrPrefix prefix(unsigned char further = 0, bool defLong = false);
};
//Converts a MemAddress from the default unsigned <cpu bit mode> to match the passed type
template<class T>
MemAddress as(MemAddress addr) {
addr.bitMode = sizeof(T) * 8;
addr.Signed = (T)-1 < (T)0;
return addr;
}
template<>
MemAddress as<float>(MemAddress addr);
template<>
MemAddress as<double>(MemAddress addr);
//Structure that provides operations that can be performed on a register
// Also provides the means to generate MemAddresses relative to a register via dereference (e.g. *eax+8)
//Implementation in virtual_asm_<processor instruction set>.cpp (e.g. virtual_asm_x86.cpp)
struct Register {
Processor& cpu;
RegCode code;
unsigned bitMode;
Register(Processor& CPU, RegCode Code);
Register(Processor& CPU, RegCode Code, unsigned BitModeOverride);
void set_regCode(Register& other) {
code = other.code;
bitMode = other.bitMode;
}
unsigned getBitMode() const;
unsigned getBitMode(const MemAddress& addr) const;
MemAddress operator*() const;
ScaledIndex operator*(unsigned char scale) const;
//Loads the address pointed to by <address> into this register
void copy_address(MemAddress address);
void swap(MemAddress address);
void swap(Register& other);
void operator<<=(Register& other);
void operator>>=(Register& other);
void rightshift_logical(Register& other);
void operator+=(unsigned int amount);
void operator+=(MemAddress address);
void operator+=(Register& other);
void operator-=(unsigned int amount);
void operator-=(Register& other);
void operator-=(MemAddress address);
void operator*=(MemAddress address);
void operator-();
void operator~();
void operator--();
void operator++();
void operator&=(unsigned long long mask);
void operator&=(MemAddress address);
void operator&=(Register other);
void operator^=(MemAddress address);
void operator^=(Register& other);
void operator|=(MemAddress address);
void operator|=(unsigned long long mask);
//Copies a smaller data type, retaining the sign
void copy_expanding(MemAddress address);
//Copies an 8 bit register, leaving 0s in higher bytes
void copy_zeroing(Register& other);
void operator=(unsigned long long value);
void operator=(void* pointer);
void operator=(Register other);
void operator=(MemAddress addr);
void operator==(Register other);
void operator==(MemAddress addr);
void operator==(unsigned int test);
void setIf(JumpType condition);
void* setDeferred(unsigned long long def = 0);
bool xmm();
bool extended();
RegCode index();
RegPrefix prefix(unsigned short other = 0, bool defaultLong = false);
RegPrefix prefix(Register& other, bool defaultLong = false);
unsigned char modrm(unsigned short other);
unsigned char modrm(Register& other);
//Multiplies *address with value, stores the result in this register
void multiply_signed(MemAddress address, int value);
//Divides {eax,edx} by this register; result in eax, remainder in edx
void divide();
void divide_signed();
};
//Converts a MemAddress from the default unsigned <cpu bit mode> to match the passed type
template<class T>
Register as(Register reg) {
reg.bitMode = sizeof(T) * 8;
return reg;
}
};
|