1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
#include "virtual_asm.h"
#include <windows.h>
namespace assembler {
unsigned Processor::maxIntArgs64() {
return 4;
}
unsigned Processor::maxFloatArgs64() {
return 4;
}
bool Processor::isIntArg64Register(unsigned char number, unsigned char arg) {
return arg < 4;
}
bool Processor::isFloatArg64Register(unsigned char number, unsigned char arg) {
return arg < 4;
}
Register Processor::intArg64(unsigned char number, unsigned char arg) {
switch(arg) {
case 0:
return Register(*this, ECX);
case 1:
return Register(*this, EDX);
case 2:
return Register(*this, R8);
case 3:
return Register(*this, R9);
default:
throw "Integer64 argument index out of bounds";
}
}
Register Processor::floatArg64(unsigned char number, unsigned char arg) {
switch(arg) {
case 0:
return Register(*this, XMM0);
case 1:
return Register(*this, XMM1);
case 2:
return Register(*this, XMM2);
case 3:
return Register(*this, XMM3);
default:
throw "Float64 argument index out of bounds";
}
}
Register Processor::intArg64(unsigned char number, unsigned char arg, Register defaultReg) {
if(isIntArg64Register(number, arg))
return intArg64(number, arg);
return defaultReg;
}
Register Processor::floatArg64(unsigned char number, unsigned char arg, Register defaultReg) {
if(isFloatArg64Register(number, arg))
return floatArg64(number, arg);
return defaultReg;
}
Register Processor::intReturn64() {
return Register(*this, EAX);
}
Register Processor::floatReturn64() {
return Register(*this, XMM0);
}
CodePage::CodePage(unsigned int Size, void* requestedStart) : used(0), final(false), references(1) {
SYSTEM_INFO info;
GetSystemInfo(&info);
unsigned minPageSize = info.dwPageSize;
size_t pageStep = (size_t)info.dwAllocationGranularity * 2;
if((size_t)Size > pageStep)
pageStep = (size_t)Size;
unsigned pages = Size / minPageSize;
if(Size % minPageSize != 0)
pages += 1;
size = (pages * minPageSize) - 2;
//Search for progressively more distant possible page locations, then just get any available one
for(int i = 1; i < 256; ++i) {
void* request = (char*)requestedStart + i*pageStep;
page = VirtualAlloc(request, size, MEM_COMMIT|MEM_RESERVE, PAGE_EXECUTE_READWRITE);
if(page != 0)
return;
}
page = VirtualAlloc(0, size, MEM_COMMIT|MEM_RESERVE, PAGE_EXECUTE_READWRITE);
}
void CodePage::grab() {
++references;
}
void CodePage::drop() {
if(--references == 0)
delete this;
}
CodePage::~CodePage() {
VirtualFree(page,0,MEM_RELEASE);
}
void CodePage::finalize() {
FlushInstructionCache(GetCurrentProcess(),page,size);
DWORD oldProtect = PAGE_EXECUTE_READWRITE;
VirtualProtect(page,size,PAGE_EXECUTE_READ,&oldProtect);
final = true;
}
unsigned int CodePage::getMinimumPageSize() {
SYSTEM_INFO info;
GetSystemInfo(&info);
return info.dwPageSize;
}
void CriticalSection::enter() {
EnterCriticalSection((CRITICAL_SECTION*)pLock);
}
void CriticalSection::leave() {
LeaveCriticalSection((CRITICAL_SECTION*)pLock);
}
CriticalSection::CriticalSection() {
auto* section = new CRITICAL_SECTION;
InitializeCriticalSection(section);
pLock = section;
}
CriticalSection::~CriticalSection() {
DeleteCriticalSection((CRITICAL_SECTION*)pLock);
delete (CRITICAL_SECTION*)pLock;
}
};
|