1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
#ifndef ALPHANUM__HPP
#define ALPHANUM__HPP
/*
The Alphanum Algorithm is an improved sorting algorithm for strings
containing numbers. Instead of sorting numbers in ASCII order like a
standard sort, this algorithm sorts numbers in numeric order.
The Alphanum Algorithm is discussed at http://www.DaveKoelle.com
This implementation is Copyright (c) 2008 Dirk Jagdmann <doj@cubic.org>.
It is a cleanroom implementation of the algorithm and not derived by
other's works. In contrast to the versions written by Dave Koelle this
source code is distributed with the libpng/zlib license.
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you use
this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source
distribution. */
/* $Header: /code/doj/alphanum.hpp,v 1.3 2008/01/28 23:06:47 doj Exp $ */
/*
Modifications for spring:
- modified to be case-insensitive
- removed DOJDEBUG code and unit test code
- conform to spring coding guidelines
*/
#include <cassert>
#include <functional>
#include <string>
#include <sstream>
#ifdef ALPHANUM_LOCALE
#include <cctype>
#endif
// TODO: make comparison with hexadecimal numbers. Extend the alphanum_comp() function by traits to choose between decimal and hexadecimal.
namespace doj {
// anonymous namespace for functions we use internally. But if you
// are coding in C, you can use alphanum_impl() directly, since it
// uses not C++ features.
namespace {
// if you want to honour the locale settings for detecting digit
// characters, you should define ALPHANUM_LOCALE
#ifdef ALPHANUM_LOCALE
/** wrapper function for ::isdigit() */
bool alphanum_isdigit(int c) {
return isdigit(c);
}
#else
/** this function does not consider the current locale and only
works with ASCII digits.
@return true if c is a digit character
*/
bool alphanum_isdigit(const char c) {
return c>='0' && c<='9';
}
#endif
/**
compare l and r with strcmp() semantics, but using
the "Alphanum Algorithm". This function is designed to read
through the l and r strings only one time, for
maximum performance. It does not allocate memory for
substrings. It can either use the C-library functions isdigit()
and atoi() to honour your locale settings, when recognizing
digit characters when you "#define ALPHANUM_LOCALE=1" or use
it's own digit character handling which only works with ASCII
digit characters, but provides better performance.
@param l NULL-terminated C-style string
@param r NULL-terminated C-style string
@return negative if l<r, 0 if l equals r, positive if l>r
*/
int alphanum_impl(const char *l, const char *r) {
enum mode_t {
STRING, NUMBER
} mode = STRING;
while (*l && *r) {
if (mode == STRING) {
char l_char, r_char;
while ((l_char = *l) && (r_char = *r)) {
l_char = tolower(l_char);
r_char = tolower(r_char);
// check if this are digit characters
const bool l_digit = alphanum_isdigit(l_char), r_digit =
alphanum_isdigit(r_char);
// if both characters are digits, we continue in NUMBER mode
if (l_digit && r_digit) {
mode = NUMBER;
break;
}
// if only the left character is a digit, we have a result
if (l_digit)
return -1;
// if only the right character is a digit, we have a result
if (r_digit)
return +1;
// compute the difference of both characters
const int diff = l_char - r_char;
// if they differ we have a result
if (diff != 0)
return diff;
// otherwise process the next characters
++l;
++r;
}
}
else { // mode==NUMBER
#ifdef ALPHANUM_LOCALE
// get the left number
char *end;
unsigned long l_int=strtoul(l, &end, 0);
l=end;
// get the right number
unsigned long r_int=strtoul(r, &end, 0);
r=end;
#else
// get the left number
unsigned long l_int=0;
while(*l && alphanum_isdigit(*l)) {
// TODO: this can overflow
l_int=l_int*10 + *l-'0';
++l;
}
// get the right number
unsigned long r_int=0;
while(*r && alphanum_isdigit(*r)) {
// TODO: this can overflow
r_int=r_int*10 + *r-'0';
++r;
}
#endif
// if the difference is not equal to zero, we have a comparison result
const long diff=l_int-r_int;
if(diff != 0)
return diff;
// otherwise we process the next substring in STRING mode
mode=STRING;
}
}
if(*r) return -1;
if(*l) return +1;
return 0;
}
}
/**
Compare left and right with the same semantics as strcmp(), but with the
"Alphanum Algorithm" which produces more human-friendly
results. The classes lT and rT must implement "std::ostream
operator<< (std::ostream&, const Ty&)".
@return negative if left<right, 0 if left==right, positive if left>right.
*/
template <typename lT, typename rT>
int alphanum_comp(const lT& left, const rT& right) {
std::ostringstream l; l << left;
std::ostringstream r; r << right;
return alphanum_impl(l.str().c_str(), r.str().c_str());
}
/**
Compare l and r with the same semantics as strcmp(), but with
the "Alphanum Algorithm" which produces more human-friendly
results.
@return negative if l<r, 0 if l==r, positive if l>r.
*/
template <>
inline int alphanum_comp<std::string>(const std::string& l, const std::string& r) {
return alphanum_impl(l.c_str(), r.c_str());
}
////////////////////////////////////////////////////////////////////////////
// now follow a lot of overloaded alphanum_comp() functions to get a
// direct call to alphanum_impl() upon the various combinations of c
// and c++ strings.
/**
Compare l and r with the same semantics as strcmp(), but with
the "Alphanum Algorithm" which produces more human-friendly
results.
@return negative if l<r, 0 if l==r, positive if l>r.
*/
inline int alphanum_comp(char* l, char* r) {
assert(l);
assert(r);
return alphanum_impl(l, r);
}
inline int alphanum_comp(const char* l, const char* r) {
assert(l);
assert(r);
return alphanum_impl(l, r);
}
inline int alphanum_comp(char* l, const char* r) {
assert(l);
assert(r);
return alphanum_impl(l, r);
}
inline int alphanum_comp(const char* l, char* r) {
assert(l);
assert(r);
return alphanum_impl(l, r);
}
inline int alphanum_comp(const std::string& l, char* r) {
assert(r);
return alphanum_impl(l.c_str(), r);
}
inline int alphanum_comp(char* l, const std::string& r) {
assert(l);
return alphanum_impl(l, r.c_str());
}
inline int alphanum_comp(const std::string& l, const char* r) {
assert(r);
return alphanum_impl(l.c_str(), r);
}
inline int alphanum_comp(const char* l, const std::string& r) {
assert(l);
return alphanum_impl(l, r.c_str());
}
////////////////////////////////////////////////////////////////////////////
/**
Functor class to compare two objects with the "Alphanum
Algorithm". If the objects are no std::string, they must
implement "std::ostream operator<< (std::ostream&, const Ty&)".
*/
template<class Ty>
struct alphanum_less : public std::binary_function<Ty, Ty, bool> {
bool operator()(const Ty& left, const Ty& right) const {
return alphanum_comp(left, right) < 0;
}
};
}
#endif
|