1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "IPathFinder.h"
#include "PathFinderDef.h"
#include "PathLog.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "System/Log/ILog.h"
static std::vector<PathNodeStateBuffer> nodeStateBuffers;
static std::vector<IPathFinder*> pathFinderInstances;
void IPathFinder::InitStatic() { pathFinderInstances.reserve(8); }
void IPathFinder::KillStatic() { pathFinderInstances.clear ( ); }
void IPathFinder::Init(unsigned int _BLOCK_SIZE)
{
{
BLOCK_SIZE = _BLOCK_SIZE;
BLOCK_PIXEL_SIZE = BLOCK_SIZE * SQUARE_SIZE;
nbrOfBlocks.x = mapDims.mapx / BLOCK_SIZE;
nbrOfBlocks.y = mapDims.mapy / BLOCK_SIZE;
mStartBlockIdx = 0;
mGoalBlockIdx = 0;
mGoalHeuristic = 0.0f;
maxBlocksToBeSearched = 0;
testedBlocks = 0;
instanceIndex = pathFinderInstances.size();
}
{
openBlockBuffer.Clear();
// handled via AllocStateBuffer
// blockStates.Clear();
// done in ResetSearch
// openBlocks.Clear();
dirtyBlocks.clear();
}
{
pathFinderInstances.push_back(this);
}
AllocStateBuffer();
ResetSearch();
}
void IPathFinder::Kill()
{
// allow our PNSB to be reused across reloads
nodeStateBuffers[instanceIndex] = std::move(blockStates);
}
void IPathFinder::AllocStateBuffer()
{
if (instanceIndex >= nodeStateBuffers.size())
nodeStateBuffers.emplace_back();
nodeStateBuffers[instanceIndex].Clear();
nodeStateBuffers[instanceIndex].Resize(nbrOfBlocks, int2(mapDims.mapx, mapDims.mapy));
// steal memory, returned in dtor
blockStates = std::move(nodeStateBuffers[instanceIndex]);
}
void IPathFinder::ResetSearch()
{
while (!dirtyBlocks.empty()) {
blockStates.ClearSquare(dirtyBlocks.back());
dirtyBlocks.pop_back();
}
// reserve a batch of dirty blocks
dirtyBlocks.reserve(4096);
openBlocks.Clear();
testedBlocks = 0;
}
IPath::SearchResult IPathFinder::GetPath(
const MoveDef& moveDef,
const CPathFinderDef& pfDef,
const CSolidObject* owner,
float3 startPos,
IPath::Path& path,
const unsigned int maxNodes
) {
startPos.ClampInBounds();
// clear the path
path.path.clear();
path.squares.clear();
path.pathCost = PATHCOST_INFINITY;
// initial calculations
if (BLOCK_SIZE != 1) {
maxBlocksToBeSearched = std::min(MAX_SEARCHED_NODES_PE - 8U, maxNodes);
} else {
maxBlocksToBeSearched = std::min(MAX_SEARCHED_NODES_PF - 8U, maxNodes);
}
mStartBlock.x = startPos.x / BLOCK_PIXEL_SIZE;
mStartBlock.y = startPos.z / BLOCK_PIXEL_SIZE;
mStartBlockIdx = BlockPosToIdx(mStartBlock);
mGoalBlockIdx = mStartBlockIdx;
assert(static_cast<unsigned int>(mStartBlock.x) < nbrOfBlocks.x);
assert(static_cast<unsigned int>(mStartBlock.y) < nbrOfBlocks.y);
// check cache (when there is one)
const int2 goalBlock = {int(pfDef.goalSquareX / BLOCK_SIZE), int(pfDef.goalSquareZ / BLOCK_SIZE)};
const CPathCache::CacheItem& ci = GetCache(mStartBlock, goalBlock, pfDef.sqGoalRadius, moveDef.pathType, pfDef.synced);
if (ci.pathType != -1) {
path = ci.path;
return ci.result;
}
// start up a new search
const IPath::SearchResult result = InitSearch(moveDef, pfDef, owner);
// if search was successful, generate new path and cache it
if (result == IPath::Ok || result == IPath::GoalOutOfRange) {
FinishSearch(moveDef, pfDef, path);
AddCache(&path, result, mStartBlock, goalBlock, pfDef.sqGoalRadius, moveDef.pathType, pfDef.synced);
if (LOG_IS_ENABLED(L_DEBUG)) {
LOG_L(L_DEBUG, "==== %s: Search completed ====", (BLOCK_SIZE != 1) ? "PE" : "PF");
LOG_L(L_DEBUG, "Tested blocks: %u", testedBlocks);
LOG_L(L_DEBUG, "Open blocks: %u", openBlockBuffer.GetSize());
LOG_L(L_DEBUG, "Path length: " _STPF_, path.path.size());
LOG_L(L_DEBUG, "Path cost: %f", path.pathCost);
LOG_L(L_DEBUG, "==============================");
}
} else {
if (LOG_IS_ENABLED(L_DEBUG)) {
LOG_L(L_DEBUG, "==== %s: Search failed! ====", (BLOCK_SIZE != 1) ? "PE" : "PF");
LOG_L(L_DEBUG, "Tested blocks: %u", testedBlocks);
LOG_L(L_DEBUG, "Open blocks: %u", openBlockBuffer.GetSize());
LOG_L(L_DEBUG, "============================");
}
}
return result;
}
// set up the starting point of the search
IPath::SearchResult IPathFinder::InitSearch(const MoveDef& moveDef, const CPathFinderDef& pfDef, const CSolidObject* owner)
{
int2 square = mStartBlock;
if (BLOCK_SIZE != 1)
square = blockStates.peNodeOffsets[moveDef.pathType][mStartBlockIdx];
const bool isStartGoal = pfDef.IsGoal(square.x, square.y);
const bool startInGoal = pfDef.startInGoalRadius;
const bool allowRawPath = pfDef.allowRawPath;
const bool allowDefPath = pfDef.allowDefPath;
assert(allowRawPath || allowDefPath);
// cleanup after the last search
ResetSearch();
IPath::SearchResult results[] = {IPath::CantGetCloser, IPath::Ok, IPath::CantGetCloser};
// although our starting square may be inside the goal radius, the starting coordinate may be outside.
// in this case we do not want to return CantGetCloser, but instead a path to our starting square.
if (isStartGoal && startInGoal)
return results[allowRawPath];
// mark and store the start-block; clear all bits except PATHOPT_OBSOLETE
blockStates.nodeMask[mStartBlockIdx] &= PATHOPT_OBSOLETE;
blockStates.nodeMask[mStartBlockIdx] |= PATHOPT_OPEN;
blockStates.fCost[mStartBlockIdx] = 0.0f;
blockStates.gCost[mStartBlockIdx] = 0.0f;
blockStates.SetMaxCost(NODE_COST_F, 0.0f);
blockStates.SetMaxCost(NODE_COST_G, 0.0f);
dirtyBlocks.push_back(mStartBlockIdx);
// start a new search and add the starting block to the open-blocks-queue
openBlockBuffer.SetSize(0);
PathNode* ob = openBlockBuffer.GetNode(openBlockBuffer.GetSize());
ob->fCost = 0.0f;
ob->gCost = 0.0f;
ob->nodePos = mStartBlock;
ob->nodeNum = mStartBlockIdx;
openBlocks.push(ob);
// mark starting point as best found position
mGoalHeuristic = pfDef.Heuristic(square.x, square.y, BLOCK_SIZE);
enum {
RAW = 0,
IPF = 1,
};
// perform the search
results[RAW] = (allowRawPath )? DoRawSearch(moveDef, pfDef, owner): IPath::Error;
results[IPF] = (allowDefPath && results[RAW] == IPath::Error)? DoSearch(moveDef, pfDef, owner): results[RAW];
if (results[IPF] == IPath::Ok)
return IPath::Ok;
if (mGoalBlockIdx != mStartBlockIdx)
return results[IPF];
// if start and goal are within the same block but distinct squares (or
// considered a single point for search purposes), then we probably can
// not get closer and should return CGC *unless* the caller requested a
// raw search only
return results[IPF + ((!allowRawPath || allowDefPath) && (!isStartGoal || startInGoal))];
}
|