File: PathDataTypes.h

package info (click to toggle)
spring 106.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 55,316 kB
  • sloc: cpp: 543,954; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (338 lines) | stat: -rw-r--r-- 9,967 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#ifndef PATH_DATATYPES_H
#define PATH_DATATYPES_H

#include <queue>
#include <vector>
#include <algorithm> // for std::fill

#include "PathConstants.h"
#include "System/type2.h"
#include <cinttypes>

/// represents either a single square (PF) or a block of squares (PE)
struct PathNode {
	PathNode()
		: fCost(0.0f)
		, gCost(0.0f)
		, nodeNum(0)
		, nodePos(0, 0)
	{}

	float fCost;
	float gCost;

	int nodeNum;
	ushort2 nodePos;

	inline bool operator <  (const PathNode& pn) const { return (fCost < pn.fCost); }
	inline bool operator >  (const PathNode& pn) const { return (fCost > pn.fCost); }
	inline bool operator == (const PathNode& pn) const { return (nodeNum == pn.nodeNum); }
};


/// functor to define node priority
struct lessCost: public std::binary_function<PathNode*, PathNode*, bool> {
	inline bool operator() (const PathNode* x, const PathNode* y) const {
		return (x->fCost == y->fCost) ? (x->gCost < y->gCost) : (x->fCost > y->fCost);
	}
};


struct PathNodeBuffer {
public:
	PathNodeBuffer() { Clear(); }

	void Clear() {
		for (unsigned int i = 0; i < MAX_SEARCHED_NODES; i++) {
			buffer[i] = {};
		}

		SetSize(0);
	}

	void SetSize(unsigned int i) { idx = i; }
	unsigned int GetSize() const { return idx; }

	const PathNode* GetNode(unsigned int i) const { return &buffer[i]; }
	      PathNode* GetNode(unsigned int i)       { return &buffer[i]; }

private:
	/// index of the most recently added node
	unsigned int idx = 0;

	PathNode buffer[MAX_SEARCHED_NODES];
};


struct PathNodeStateBuffer {
	PathNodeStateBuffer() {
		#if !defined(_MSC_FULL_VER) || _MSC_FULL_VER > 180040000 // ensure that ::max() is constexpr
		static_assert(PATHOPT_SIZE <= std::numeric_limits<std::uint8_t>::max(), "nodeMask basic type too small to hold PATHOPT bitmask");
		#endif

		Clear();
	}

	PathNodeStateBuffer(const PathNodeStateBuffer& pnsb) = delete;
	PathNodeStateBuffer(PathNodeStateBuffer&& pnsb) { *this = std::move(pnsb); }

	PathNodeStateBuffer& operator = (const PathNodeStateBuffer& pnsb) = delete;
	PathNodeStateBuffer& operator = (PathNodeStateBuffer&& pnsb) {
		fCost = std::move(pnsb.fCost);
		gCost = std::move(pnsb.gCost);

		nodeMask = std::move(pnsb.nodeMask);
		peNodeOffsets = std::move(pnsb.peNodeOffsets);

		extraCosts[ true] = std::move(pnsb.extraCosts[ true]);
		extraCosts[false] = std::move(pnsb.extraCosts[false]);

		extraCostsOverlay[ true] = pnsb.extraCostsOverlay[ true];
		extraCostsOverlay[false] = pnsb.extraCostsOverlay[false];

		pnsb.extraCostsOverlay[ true] = nullptr;
		pnsb.extraCostsOverlay[false] = nullptr;

		maxCosts[NODE_COST_F] = pnsb.maxCosts[NODE_COST_F];
		maxCosts[NODE_COST_G] = pnsb.maxCosts[NODE_COST_G];
		maxCosts[NODE_COST_H] = pnsb.maxCosts[NODE_COST_H];

		ps = pnsb.ps;
		br = pnsb.br;
		mr = pnsb.mr;

		er[ true] = pnsb.er[ true];
		er[false] = pnsb.er[false];
		return *this;
	}


	unsigned int GetSize() const { return fCost.size(); }

	void Resize(const int2& bufRes, const int2& mapRes) {
		ps = mapRes / bufRes;
		br = bufRes;
		mr = mapRes;

		fCost.resize(br.x * br.y, PATHCOST_INFINITY);
		gCost.resize(br.x * br.y, PATHCOST_INFINITY);
		nodeMask.resize(br.x * br.y, 0);

		// created on-demand
		// extraCosts[ true].resize(br.x * br.y, 0.0f);
		// extraCosts[false].resize(br.x * br.y, 0.0f);

		#if 0
		// is done in PathEstimator, PF does not need these
		if (bufRes != mapRes)
			peNodeOffsets.resize(numPathTypes);
		#endif
	}

	void Clear() {
		fCost.clear();
		gCost.clear();

		nodeMask.clear();
		peNodeOffsets.clear();

		extraCosts[ true].clear();
		extraCosts[false].clear();

		extraCostsOverlay[ true] = nullptr;
		extraCostsOverlay[false] = nullptr;

		maxCosts[NODE_COST_F] = 0.0f;
		maxCosts[NODE_COST_G] = 0.0f;
		maxCosts[NODE_COST_H] = 0.0f;

		ps        = {0, 0};
		br        = {0, 0};
		mr        = {0, 0};
		er[ true] = {1, 1};
		er[false] = {1, 1};
	}

	void ClearSquare(int idx) {
		// assert(idx >= 0 && idx < fCost.size());
		fCost[idx] = PATHCOST_INFINITY;
		gCost[idx] = PATHCOST_INFINITY;
		// clear all bits except PATHOPT_OBSOLETE
		nodeMask[idx] &= PATHOPT_OBSOLETE;
	}


	/// size of the memory-region we hold allocated (excluding sizeof(*this))
	unsigned int GetMemFootPrint() const {
		unsigned int memFootPrint = 0;

		if (!peNodeOffsets.empty())
			memFootPrint += (peNodeOffsets.size() * (sizeof(std::vector<short2>) + peNodeOffsets[0].size() * sizeof(short2)));

		memFootPrint += (nodeMask.size() * sizeof(std::uint8_t));
		memFootPrint += ((fCost.size() + gCost.size()) * sizeof(float));
		memFootPrint += ((extraCosts[true].size() + extraCosts[false].size()) * sizeof(float));

		return memFootPrint;
	}

	void SetMaxCost(unsigned int t, float c) { maxCosts[t] = c; }
	float GetMaxCost(unsigned int t) const { return maxCosts[t]; }

	/// {@param xhm} and {@param zhm} are always passed in heightmap-coordinates
	float GetNodeExtraCost(unsigned int xhm, unsigned int zhm, bool synced) const {
		// downsample-factor
		const int2 dsf = {mr.x / er[synced].x, mr.y / er[synced].y};

		const float* eco = nullptr;
		const float* ecd = nullptr;

		if ((eco = extraCostsOverlay[synced]) != nullptr)
			return eco[ (zhm / dsf.y) * er[synced].x  +  (xhm / dsf.x) ];

		// null if vector is empty
		if ((ecd = extraCosts[synced].data()) != nullptr)
			return ecd[ (zhm / ps.y) * br.x  +  (xhm / ps.x) ];

		return 0.0f;
	}

	const float* GetNodeExtraCosts(bool synced) const {
		return extraCostsOverlay[synced];
	}

	void SetNodeExtraCost(unsigned int xhm, unsigned int zhm, float cost, bool synced) {
		auto& ecv = extraCosts[synced];

		if (ecv.empty())
			ecv.resize(br.x * br.y, 0.0f); // alloc on-demand

		ecv[ (zhm / ps.y) * br.x  +  (xhm / ps.x) ] = cost;
	}

	void SetNodeExtraCosts(const float* costs, unsigned int sx, unsigned int sz, bool synced) {
		extraCostsOverlay[synced] = costs;

		er[synced].x = sx;
		er[synced].y = sz;
	}

public:
	std::vector<float> fCost;
	std::vector<float> gCost;

	/// bitmask of PATHOPT_{OPEN, ..., OBSOLETE} flags
	std::vector<std::uint8_t> nodeMask;

	/// for the PE, maintains an array of the best accessible
	/// offset (from a block's center position) per path-type
	/// peNodeOffsets[pathType][blockIdx]
	std::vector< std::vector<short2> > peNodeOffsets;

private:
	// overlay-cost modifiers for nodes (when non-zero, these
	// modify the behavior of GetPath() and GetNextWaypoint())
	//
	// <extraCosts[false]> may not be read in synced context,
	// because AI's and unsynced Lua have write-access to it
	// <extraCosts[true]> may not be written in any unsynced
	// context
	//
	// NOTE: if more than one local AI instance is active,
	// each must undo its changes or they will be visible
	// to the other AI's
	// NOTE: not public, created on-demand
	std::vector<float> extraCosts[2];

	// if non-NULL, these override the respective extraCosts vector
	// (note that they can have arbitrary resolutions between 1 and
	// mapDims.map{x,y})
	const float* extraCostsOverlay[2];

private:
	float3 maxCosts;

	int2 ps;    ///< patch size (eg. 1 for PF, BLOCK_SIZE for PE); ignored when extraCosts != NULL
	int2 br;    ///< buffer resolution (equal to mr / ps); ignored when extraCosts != NULL
	int2 mr;    ///< heightmap resolution (equal to mapDims.map{x,y})
	int2 er[2]; ///< extraCosts resolution
};



// looks like a std::vector, but holds a fixed-size buffer
// used as a backing array for the PathPriorityQueue dtype
class PathVector {
public:
	typedef int size_type;
	typedef PathNode* value_type;
	typedef PathNode* reference;
	typedef PathNode** iterator;
	typedef const PathNode* const_reference;
	typedef const PathNode* const* const_iterator;

		// gcc 4.3 requires concepts, so provide them
		value_type& operator [] (size_type idx) { return buf[idx]; }
		const value_type& operator [] (size_type idx) const { return buf[idx]; }

		typedef iterator pointer;
		typedef const_iterator const_pointer;
		typedef int difference_type;

		typedef PathNode** reverse_iterator;
		typedef const PathNode* const* const_reverse_iterator;

		// FIXME: don't ever use these
		reverse_iterator rbegin() { return 0; }
		reverse_iterator rend() { return 0; }
		const_reverse_iterator rbegin() const { return 0; }
		const_reverse_iterator rend() const { return 0; }
		PathVector(int, const value_type&): bufPos(-1) { abort(); }
		PathVector(iterator, iterator): bufPos(-1) { abort(); }
		void insert(iterator, const value_type&) { abort(); }
		void insert(iterator, const size_type&, const value_type&) { abort(); }
		void insert(iterator, iterator, iterator) { abort(); }
		void erase(iterator, iterator) { abort(); }
		void erase(iterator) { abort(); }
		void erase(iterator, iterator, iterator) { abort(); }
		void swap(PathVector&) { abort(); }
	// end of concept hax

	PathVector(): bufPos(-1) {
#ifdef DEBUG
		// only do this in DEBUG builds for performance reasons
		// it could help finding logic errors
		std::fill(std::begin(buf), std::end(buf), nullptr);
#endif
	}

	inline void push_back(PathNode* os) { buf[++bufPos] = os; }
	inline void pop_back() { --bufPos; }
	inline PathNode* back() const { return buf[bufPos]; }
	inline const value_type& front() const { return buf[0]; }
	inline value_type& front() { return buf[0]; }
	inline bool empty() const { return (bufPos < 0); }
	inline size_type size() const { return bufPos + 1; }
	inline size_type max_size() const { return (1 << 30); }
	inline iterator begin() { return &buf[0]; }
	inline iterator end() { return &buf[bufPos + 1]; }
	inline const_iterator begin() const { return &buf[0]; }
	inline const_iterator end() const { return &buf[bufPos + 1]; }
	inline void clear() { bufPos = -1; }

private:
	int bufPos;

	PathNode* buf[MAX_SEARCHED_NODES];
};


class PathPriorityQueue: public std::priority_queue<PathNode*, PathVector, lessCost> {
public:
	/// faster than "while (!q.empty()) { q.pop(); }"
	void Clear() { c.clear(); }
};

#endif // PATH_DATATYPES_H