File: PathFinder.cpp

package info (click to toggle)
spring 106.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 55,316 kB
  • sloc: cpp: 543,954; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (608 lines) | stat: -rw-r--r-- 22,447 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include <cstring>
#include <ostream>

#include "PathFinder.h"
#include "PathFinderDef.h"
#include "PathFlowMap.hpp"
#include "PathHeatMap.hpp"
#include "PathLog.h"
#include "PathMemPool.h"
#include "Map/Ground.h"
#include "Map/ReadMap.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
#include "Sim/Misc/ModInfo.h"
#include "Sim/Misc/GeometricObjects.h"
#include "System/MathConstants.h"


#define ENABLE_PATH_DEBUG 0
#define ENABLE_DIAG_TESTS 1

using namespace Bitwise;
using MMBT = CMoveMath::BlockTypes;

PFMemPool pfMemPool;


static constexpr uint32_t squareMobileBlockBits =
	uint32_t(MMBT::BLOCK_MOBILE_BUSY) |
	uint32_t(MMBT::BLOCK_MOBILE     ) |
	uint32_t(MMBT::BLOCK_MOVING     );

static constexpr CPathFinder::BlockCheckFunc blockCheckFuncs[2] = {
	CMoveMath::IsBlockedNoSpeedModCheckThreadUnsafe, // alias for RangeIsBlocked
	CMoveMath::IsBlockedNoSpeedModCheck // same as RangeIsBlocked without tempNum test
};

// both indexed by PATHOPT* bitmasks
static constexpr float PF_DIRECTION_COSTS[] = {
	0.0f       ,
	1.0f       , // PATHOPT_LEFT
	1.0f       , // PATHOPT_RIGHT
	0.0f       , // PATHOPT_LEFT | PATHOPT_RIGHT
	1.0f       , // PATHOPT_UP
	math::SQRT2, // PATHOPT_LEFT | PATHOPT_UP
	math::SQRT2, // PATHOPT_RIGHT | PATHOPT_UP
	0.0f       , // PATHOPT_LEFT | PATHOPT_RIGHT | PATHOPT_UP
	1.0f       , // PATHOPT_DOWN
	math::SQRT2, // PATHOPT_LEFT | PATHOPT_DOWN
	math::SQRT2, // PATHOPT_RIGHT | PATHOPT_DOWN
	0.0f       ,
	0.0f       ,
	0.0f       ,
	0.0f       ,
	0.0f       ,
};

//FIXME why not use PATHDIR_* consts and merge code with top one
static constexpr float3 PF_DIRECTION_VECTORS_3D[] = {
	{ 0,               0,                0},
	{+1,               0,                0}, // PATHOPT_LEFT
	{-1,               0,                0}, // PATHOPT_RIGHT
	{ 0,               0,                0}, // PATHOPT_LEFT | PATHOPT_RIGHT
	{ 0,               0,               +1}, // PATHOPT_UP
	{+math::HALFSQRT2, 0, +math::HALFSQRT2}, // PATHOPT_LEFT | PATHOPT_UP
	{-math::HALFSQRT2, 0, +math::HALFSQRT2}, // PATHOPT_RIGHT | PATHOPT_UP
	{ 0,               0,                0}, // PATHOPT_LEFT | PATHOPT_RIGHT | PATHOPT_UP
	{ 0,               0,               -1}, // PATHOPT_DOWN
	{+math::HALFSQRT2, 0, -math::HALFSQRT2}, // PATHOPT_LEFT | PATHOPT_DOWN
	{-math::HALFSQRT2, 0, -math::HALFSQRT2}, // PATHOPT_RIGHT | PATHOPT_DOWN
	{ 0,               0,                0},
	{ 0,               0,                0},
	{ 0,               0,                0},
	{ 0,               0,                0},
	{ 0,               0,                0}
};


void CPathFinder::InitStatic() {
	static_assert(PF_DIRECTION_COSTS[PATHOPT_LEFT                ] ==        1.0f, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_RIGHT               ] ==        1.0f, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_UP                  ] ==        1.0f, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_DOWN                ] ==        1.0f, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_LEFT  | PATHOPT_UP  ] == math::SQRT2, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_UP  ] == math::SQRT2, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_RIGHT | PATHOPT_DOWN] == math::SQRT2, "");
	static_assert(PF_DIRECTION_COSTS[PATHOPT_LEFT  | PATHOPT_DOWN] == math::SQRT2, "");

	static_assert(PathDir2PathOpt(PATHDIR_LEFT      ) ==                  PATHOPT_LEFT , "");
	static_assert(PathDir2PathOpt(PATHDIR_RIGHT     ) ==                  PATHOPT_RIGHT, "");
	static_assert(PathDir2PathOpt(PATHDIR_UP        ) ==                  PATHOPT_UP   , "");
	static_assert(PathDir2PathOpt(PATHDIR_DOWN      ) ==                  PATHOPT_DOWN , "");
	static_assert(PathDir2PathOpt(PATHDIR_LEFT_UP   ) == (PATHOPT_LEFT  | PATHOPT_UP  ), "");
	static_assert(PathDir2PathOpt(PATHDIR_RIGHT_UP  ) == (PATHOPT_RIGHT | PATHOPT_UP  ), "");
	static_assert(PathDir2PathOpt(PATHDIR_RIGHT_DOWN) == (PATHOPT_RIGHT | PATHOPT_DOWN), "");
	static_assert(PathDir2PathOpt(PATHDIR_LEFT_DOWN ) == (PATHOPT_LEFT  | PATHOPT_DOWN), "");

	static_assert(PATHDIR_LEFT       == PathOpt2PathDir(                 PATHOPT_LEFT ), "");
	static_assert(PATHDIR_RIGHT      == PathOpt2PathDir(                 PATHOPT_RIGHT), "");
	static_assert(PATHDIR_UP         == PathOpt2PathDir(                 PATHOPT_UP   ), "");
	static_assert(PATHDIR_DOWN       == PathOpt2PathDir(                 PATHOPT_DOWN ), "");
	static_assert(PATHDIR_LEFT_UP    == PathOpt2PathDir((PATHOPT_LEFT  | PATHOPT_UP  )), "");
	static_assert(PATHDIR_RIGHT_UP   == PathOpt2PathDir((PATHOPT_RIGHT | PATHOPT_UP  )), "");
	static_assert(PATHDIR_RIGHT_DOWN == PathOpt2PathDir((PATHOPT_RIGHT | PATHOPT_DOWN)), "");
	static_assert(PATHDIR_LEFT_DOWN  == PathOpt2PathDir((PATHOPT_LEFT  | PATHOPT_DOWN)), "");

	static_assert(DIR2OPT[PATHDIR_LEFT] == PATHOPT_LEFT, "");
	static_assert(DIR2OPT[PATHDIR_LEFT] == PATHOPT_LEFT, "");

	// initialize direction-vectors table
	for (int i = 0; i < (PATH_DIRECTIONS << 1); ++i) {
		float3 temp(PF_DIRECTION_VECTORS_2D[i].x, 0.0f, PF_DIRECTION_VECTORS_2D[i].y);
		temp.SafeNormalize();
		assert(temp == PF_DIRECTION_VECTORS_3D[i]);
	}
}


void CPathFinder::Init(bool threadSafe)
{
	IPathFinder::Init(1);

	blockCheckFunc = blockCheckFuncs[threadSafe];
	dummyCacheItem = CPathCache::CacheItem{IPath::Error, {}, {-1, -1}, {-1, -1}, -1.0f, -1};
}


IPath::SearchResult CPathFinder::DoRawSearch(
	const MoveDef& moveDef,
	const CPathFinderDef& pfDef,
	const CSolidObject* owner
) {
	if (!moveDef.allowRawMovement)
		return IPath::Error;

	const int2 strtBlk = BlockIdxToPos(mStartBlockIdx);
	const int2 goalBlk = {int(pfDef.goalSquareX), int(pfDef.goalSquareZ)};
	const int2 diffBlk = {std::abs(goalBlk.x - strtBlk.x), std::abs(goalBlk.y - strtBlk.y)};
	// has not been set yet, DoSearch is called after us
	// const int2 goalBlk = BlockIdxToPos(mGoalBlockIdx);

	if ((Square(diffBlk.x) + Square(diffBlk.y)) > Square(pfDef.maxRawPathLen))
		return IPath::Error;


	const/*expr*/ auto StepFunc = [](const int2& dir, const int2& dif, int2& pos, int2& err) {
		pos.x += (dir.x * (err.y >= 0));
		pos.y += (dir.y * (err.y <= 0));
		err.x -= (dif.y * (err.y >= 0));
		err.x += (dif.x * (err.y <= 0));
	};

	const int2 fwdStepDir = int2{(goalBlk.x > strtBlk.x), (goalBlk.y > strtBlk.y)} * 2 - int2{1, 1};
	const int2 revStepDir = int2{(strtBlk.x > goalBlk.x), (strtBlk.y > goalBlk.y)} * 2 - int2{1, 1};

	int2 blkStepCtr = {diffBlk.x + diffBlk.y, diffBlk.x + diffBlk.y};
	int2 fwdStepErr = {diffBlk.x - diffBlk.y, diffBlk.x - diffBlk.y};
	int2 revStepErr = fwdStepErr;
	int2 fwdTestBlk = strtBlk;
	int2 revTestBlk = goalBlk;

	// test bidirectionally so bad goal-squares cause early exits
	// NOTE:
	//   no need for integration with backtracking in FinishSearch
	//   the final "path" only contains startPos which is consumed
	//   immediately, after which NextWayPoint keeps returning the
	//   goal until owner reaches it
	for (blkStepCtr += int2{1, 1}; (blkStepCtr.x > 0 && blkStepCtr.y > 0); blkStepCtr -= int2{1, 1}) {
		{
			if ((blockCheckFunc(moveDef, fwdTestBlk.x, fwdTestBlk.y, owner) & MMBT::BLOCK_STRUCTURE) != 0)
				return IPath::Error;
			if (CMoveMath::GetPosSpeedMod(moveDef, fwdTestBlk.x, fwdTestBlk.y) <= pfDef.minRawSpeedMod)
				return IPath::Error;
		}

		{
			if ((blockCheckFunc(moveDef, revTestBlk.x, revTestBlk.y, owner) & MMBT::BLOCK_STRUCTURE) != 0)
				return IPath::Error;
			if (CMoveMath::GetPosSpeedMod(moveDef, revTestBlk.x, revTestBlk.y) <= pfDef.minRawSpeedMod)
				return IPath::Error;
		}

		// NOTE: for odd-length paths, center square is tested twice
		if ((std::abs(fwdTestBlk.x - revTestBlk.x) <= 1) && (std::abs(fwdTestBlk.y - revTestBlk.y) <= 1))
			break;

		StepFunc(fwdStepDir, diffBlk * 2, fwdTestBlk, fwdStepErr);
		StepFunc(revStepDir, diffBlk * 2, revTestBlk, revStepErr);

		// skip if exactly crossing a vertex (in either direction)
		blkStepCtr.x -= (fwdStepErr.y == 0);
		blkStepCtr.y -= (revStepErr.y == 0);
		fwdStepErr.y  = fwdStepErr.x;
		revStepErr.y  = revStepErr.x;
	}

	return IPath::Ok;
}

IPath::SearchResult CPathFinder::DoSearch(
	const MoveDef& moveDef,
	const CPathFinderDef& pfDef,
	const CSolidObject* owner
) {
	bool foundGoal = false;

	while (!openBlocks.empty() && (openBlockBuffer.GetSize() < maxBlocksToBeSearched)) {
		// get the open square with lowest expected path-cost
		const PathNode* openSquare = openBlocks.top();
		openBlocks.pop();

		// check if this PathNode has become obsolete
		if (blockStates.fCost[openSquare->nodeNum] != openSquare->fCost)
			continue;

		// check if the goal has been reached
		if (pfDef.IsGoal(openSquare->nodePos.x, openSquare->nodePos.y)) {
			mGoalBlockIdx = openSquare->nodeNum;
			mGoalHeuristic = 0.0f;
			foundGoal = true;
			break;
		}

		if (!pfDef.WithinConstraints(openSquare->nodePos.x, openSquare->nodePos.y)) {
			blockStates.nodeMask[openSquare->nodeNum] |= PATHOPT_CLOSED;
			dirtyBlocks.push_back(openSquare->nodeNum);
			continue;
		}

		TestNeighborSquares(moveDef, pfDef, openSquare, owner);
	}

	if (foundGoal)
		return IPath::Ok;

	// could not reach goal within <maxBlocksToBeSearched> exploration limit
	if (openBlockBuffer.GetSize() >= maxBlocksToBeSearched)
		return IPath::GoalOutOfRange;

	// could not reach goal from this starting position if nothing to left to explore
	if (openBlocks.empty())
		return IPath::GoalOutOfRange;

	// should be unreachable
	return IPath::Error;
}

void CPathFinder::TestNeighborSquares(
	const MoveDef& moveDef,
	const CPathFinderDef& pfDef,
	const PathNode* square,
	const CSolidObject* owner
) {
	struct SquareState {
		CMoveMath::BlockType blockMask = MMBT::BLOCK_IMPASSABLE;
		float speedMod = 0.0f;
		bool insideMap = true;
		bool insideDef = false;
	};

	SquareState ngbStates[PATH_DIRECTIONS];

	const int2 squarePos = square->nodePos;

	const bool startSquareExpanded = (openBlocks.empty() && testedBlocks < 8);
	const bool startSquareBlocked = (startSquareExpanded && (blockCheckFunc(moveDef, squarePos.x, squarePos.y, owner) & MMBT::BLOCK_STRUCTURE) != 0);

	// precompute structure-blocked state and speedmod for all neighbors
	for (SquareState& sqState: ngbStates) {
		const unsigned int dirIdx = &sqState - &ngbStates[0];
		const unsigned int optDir = PathDir2PathOpt(dirIdx);
		const int2 ngbSquareCoors = squarePos + PF_DIRECTION_VECTORS_2D[optDir];
		const unsigned int ngbSquareIdx = BlockPosToIdx(ngbSquareCoors);

		sqState.insideMap &= (static_cast<unsigned int>(ngbSquareCoors.x) < nbrOfBlocks.x);
		sqState.insideMap &= (static_cast<unsigned int>(ngbSquareCoors.y) < nbrOfBlocks.y);

		if (!sqState.insideMap)
			continue;

		if (blockStates.nodeMask[ngbSquareIdx] & (PATHOPT_CLOSED | PATHOPT_BLOCKED)) //FIXME
			continue;

		// IsBlockedNoSpeedModCheck; very expensive call but with a ~20% (?) chance of early-out
		if ((sqState.blockMask = blockCheckFunc(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, owner)) & MMBT::BLOCK_STRUCTURE) {
			blockStates.nodeMask[ngbSquareIdx] |= PATHOPT_CLOSED;
			dirtyBlocks.push_back(ngbSquareIdx);
			continue;
		}


		if (!pfDef.dirIndependent) {
			sqState.speedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y, PF_DIRECTION_VECTORS_3D[optDir]);
		} else {
			// PE search; use positional speed-mods since PE assumes path-costs
			// are bidirectionally symmetric between parent and child vertices
			// no gain placing this in front of the above code, only has a ~2%
			// chance (heavily depending on the map) to early-out
			//
			// only close node if search is directionally independent, since it
			// might still be entered from another (better) direction otherwise
			if ((sqState.speedMod = CMoveMath::GetPosSpeedMod(moveDef, ngbSquareCoors.x, ngbSquareCoors.y)) == 0.0f) {
				blockStates.nodeMask[ngbSquareIdx] |= PATHOPT_CLOSED;
				dirtyBlocks.push_back(ngbSquareIdx);
			}
		}

		// LHS is only here to save some cycles
		sqState.insideDef = (sqState.speedMod != 0.0f && pfDef.WithinConstraints(ngbSquareCoors.x, ngbSquareCoors.y));
	}


	const auto CanTestSquareSM = [&](const int dir) { return (ngbStates[dir].speedMod != 0.0f); };
	const auto CanTestSquareIS = [&](const int dir) { return (ngbStates[dir].insideDef       ); };

	#if ENABLE_DIAG_TESTS
	const auto TestDiagSquare = [&](const int dirX, const int dirY, const int dirXY) {
		if (!CanTestSquareSM(dirXY) || (!startSquareBlocked && (!CanTestSquareSM(dirX) || !CanTestSquareSM(dirY))))
			return;
		if (!CanTestSquareIS(dirXY) && (                        !CanTestSquareIS(dirX) || !CanTestSquareIS(dirY)))
			return;

		TestBlock(moveDef, pfDef, square, owner, PathDir2PathOpt(dirXY), ngbStates[dirXY].blockMask, ngbStates[dirXY].speedMod);
	};
	#endif

	// first test squares along the cardinal directions
	for (unsigned int dir: PATHDIR_CARDINALS) {
		if (!CanTestSquareSM(dir))
			continue;

		TestBlock(moveDef, pfDef, square, owner, PathDir2PathOpt(dir), ngbStates[dir].blockMask, ngbStates[dir].speedMod);
	}

	#if ENABLE_DIAG_TESTS
	// next test the diagonal squares
	//
	// don't search diagonally if there is a blocking object
	// (or blocking terrain!) in one of the two side squares
	// e.g. do not consider the edge (p, q) passable if X is
	// blocked here:
	//
	//   +---+---+
	//   | X | q |
	//   +---+---+
	//   | p | X |
	//   +---+---+
	//
	// *** IMPORTANT ***
	//
	// if either side-square is merely outside the constrained
	// area but the diagonal square is not, we do consider the
	// edge passable since we still need to be able to jump to
	// diagonally adjacent PE-blocks!
	//
	// make another exception if the starting square is inside
	// a concave corner s.t. all non-diagonal ngbs are blocked
	// (according to blockCheckFunc) and the MoveDef footprint
	// overlaps at least one impassable square, which would be
	// the case for a 5x5 footprint centered on S below
	//
	//   [.][.][.][.][X][X]
	//   [.][.][.][.][X][X]
	//   [.][.][S][.][.][ ]
	//   [.][.][.][.][.][ ]
	//   [X][X][.][.][X][X]
	//   [X][X][ ][ ][X][X]
	//
	TestDiagSquare(PATHDIR_LEFT,  PATHDIR_UP,   PATHDIR_LEFT_UP   );
	TestDiagSquare(PATHDIR_RIGHT, PATHDIR_UP,   PATHDIR_RIGHT_UP  );
	TestDiagSquare(PATHDIR_LEFT,  PATHDIR_DOWN, PATHDIR_LEFT_DOWN );
	TestDiagSquare(PATHDIR_RIGHT, PATHDIR_DOWN, PATHDIR_RIGHT_DOWN);
	#endif

	// mark this square as closed
	blockStates.nodeMask[square->nodeNum] |= PATHOPT_CLOSED;
	dirtyBlocks.push_back(square->nodeNum);
}

bool CPathFinder::TestBlock(
	const MoveDef& moveDef,
	const CPathFinderDef& pfDef,
	const PathNode* parentSquare,
	const CSolidObject* owner,
	const unsigned int pathOptDir,
	const unsigned int blockStatus,
	float speedMod
) {
	testedBlocks++;

	// initial calculations of the new block
	const int2 square = parentSquare->nodePos + PF_DIRECTION_VECTORS_2D[pathOptDir];
	const unsigned int sqrIdx = BlockPosToIdx(square);

	// bounds-check
	assert(static_cast<unsigned>(square.x) < nbrOfBlocks.x);
	assert(static_cast<unsigned>(square.y) < nbrOfBlocks.y);
	assert((blockStates.nodeMask[sqrIdx] & (PATHOPT_CLOSED | PATHOPT_BLOCKED)) == 0);
	assert((blockStatus & MMBT::BLOCK_STRUCTURE) == 0);
	assert(speedMod != 0.0f);

	if (pfDef.testMobile && moveDef.avoidMobilesOnPath) {
		switch (blockStatus & squareMobileBlockBits) {
			case (uint32_t(MMBT::BLOCK_MOBILE_BUSY) | uint32_t(MMBT::BLOCK_MOBILE) | uint32_t(MMBT::BLOCK_MOVING)):   // 111
			case (uint32_t(MMBT::BLOCK_MOBILE_BUSY) | uint32_t(MMBT::BLOCK_MOBILE) | uint32_t(MMBT::BLOCK_NONE  )):   // 110
			case (uint32_t(MMBT::BLOCK_MOBILE_BUSY) | uint32_t(MMBT::BLOCK_NONE  ) | uint32_t(MMBT::BLOCK_MOVING)):   // 101
			case (uint32_t(MMBT::BLOCK_MOBILE_BUSY) | uint32_t(MMBT::BLOCK_NONE  ) | uint32_t(MMBT::BLOCK_NONE  )): { // 100
				speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_BUSY_MULT];
			} break;

			case (uint32_t(MMBT::BLOCK_NONE       ) | uint32_t(MMBT::BLOCK_MOBILE) | uint32_t(MMBT::BLOCK_MOVING)):   // 011
			case (uint32_t(MMBT::BLOCK_NONE       ) | uint32_t(MMBT::BLOCK_MOBILE) | uint32_t(MMBT::BLOCK_NONE  )): { // 010
				speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_IDLE_MULT];
			} break;

			case (uint32_t(MMBT::BLOCK_NONE       ) | uint32_t(MMBT::BLOCK_NONE  ) | uint32_t(MMBT::BLOCK_MOVING)): { // 001
				speedMod *= moveDef.speedModMults[MoveDef::SPEEDMOD_MOBILE_MOVE_MULT];
			} break;

			default: {
			} break;
		}
	}

	const float heatCost  = (pfDef.testMobile) ? (PathHeatMap::GetInstance())->GetHeatCost(square.x, square.y, moveDef, ((owner != nullptr)? owner->id: -1U)) : 0.0f;
	//const float flowCost  = (pfDef.testMobile) ? (PathFlowMap::GetInstance())->GetFlowCost(square.x, square.y, moveDef, pathOptDir) : 0.0f;
	const float extraCost = blockStates.GetNodeExtraCost(square.x, square.y, pfDef.synced);

	const float dirMoveCost = (1.0f + heatCost) * PF_DIRECTION_COSTS[pathOptDir];
	const float nodeCost = (dirMoveCost / speedMod) + extraCost;

	const float gCost = parentSquare->gCost + nodeCost;                  // g
	const float hCost = pfDef.Heuristic(square.x, square.y, BLOCK_SIZE); // h
	const float fCost = gCost + hCost;                                   // f

	if (blockStates.nodeMask[sqrIdx] & PATHOPT_OPEN) {
		// already in the open set, look for a cost-improvement
		if (blockStates.fCost[sqrIdx] <= fCost)
			return true;

		blockStates.nodeMask[sqrIdx] &= ~PATHOPT_CARDINALS;
	}

	// if heuristic says this node is closer to goal than previous h-estimate, keep it
	if (!pfDef.exactPath && hCost < mGoalHeuristic) {
		mGoalBlockIdx = sqrIdx;
		mGoalHeuristic = hCost;
	}

	// store and mark this square as open (expanded, but not yet pulled from pqueue)
	openBlockBuffer.SetSize(openBlockBuffer.GetSize() + 1);
	assert(openBlockBuffer.GetSize() < MAX_SEARCHED_NODES_PF);

	PathNode* os = openBlockBuffer.GetNode(openBlockBuffer.GetSize());
		os->fCost   = fCost;
		os->gCost   = gCost;
		os->nodePos = square;
		os->nodeNum = sqrIdx;
	openBlocks.push(os);

	blockStates.SetMaxCost(NODE_COST_F, std::max(blockStates.GetMaxCost(NODE_COST_F), fCost));
	blockStates.SetMaxCost(NODE_COST_G, std::max(blockStates.GetMaxCost(NODE_COST_G), gCost));

	blockStates.fCost[sqrIdx] = os->fCost;
	blockStates.gCost[sqrIdx] = os->gCost;
	blockStates.nodeMask[sqrIdx] |= (PATHOPT_OPEN | pathOptDir);

	dirtyBlocks.push_back(sqrIdx);
	return true;
}


void CPathFinder::FinishSearch(const MoveDef& moveDef, const CPathFinderDef& pfDef, IPath::Path& foundPath) const
{
	if (pfDef.needPath) {
		// backtrack
		int2 square = BlockIdxToPos(mGoalBlockIdx);

		unsigned int blockIdx = mGoalBlockIdx;
		unsigned int numNodes = 0;

		{
			while (blockIdx != mStartBlockIdx) {
				assert(PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS] != int2(0, 0));

				square   -= PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS];
				blockIdx  = BlockPosToIdx(square);
				numNodes += 1;
			}

			// note: <squares> is only used for heatmapping (via PathManager::GetDetailedPathSquares)
			foundPath.squares.reserve(numNodes);
			foundPath.path.reserve(numNodes);

			// reset
			square = BlockIdxToPos(blockIdx = mGoalBlockIdx);
		}

		// for path adjustment (cutting corners)
		// make sure we don't match anything
		int2 prvSquares[2] = {square, square};

		while (true) {
			foundPath.squares.push_back(square);
			foundPath.path.emplace_back(square.x * SQUARE_SIZE, CMoveMath::yLevel(moveDef, square.x, square.y), square.y * SQUARE_SIZE);

			// try to cut corners
			AdjustFoundPath(moveDef, foundPath, prvSquares[0], prvSquares[1], square);

			prvSquares[0] = prvSquares[1];
			prvSquares[1] = square;

			if (blockIdx == mStartBlockIdx)
				break;

			square -= PF_DIRECTION_VECTORS_2D[blockStates.nodeMask[blockIdx] & PATHOPT_CARDINALS];
			blockIdx = BlockPosToIdx(square);
		}

		if (!foundPath.path.empty())
			foundPath.pathGoal = foundPath.path[0];
	}

	foundPath.pathCost = blockStates.fCost[mGoalBlockIdx];
}




/** Helper function for SmoothMidWaypoint */
static inline void FixupPath3Pts(const MoveDef& moveDef, const float3 p1, float3& p2, const float3 p3)
{
#if ENABLE_PATH_DEBUG
	float3 old = p2;
#endif
	p2.x = 0.5f * (p1.x + p3.x);
	p2.z = 0.5f * (p1.z + p3.z);
	p2.y = CMoveMath::yLevel(moveDef, p2);

#if ENABLE_PATH_DEBUG
	geometricObjects->AddLine(old + UpVector * 10.0f, p2 + UpVector * 10.0f, 5, 10, 600, 0);
#endif
}


void CPathFinder::SmoothMidWaypoint(
	const int2 testSqr,
	const int2 prevSqr,
	const MoveDef& moveDef,
	IPath::Path& foundPath
) const {
	constexpr float COSTMOD = 1.39f; // (math::sqrt(2) + 1) / math::sqrt(3)

	const int tstSqrIdx = BlockPosToIdx(testSqr);
	const int prvSqrIdx = BlockPosToIdx(prevSqr);

	if ((blockStates.nodeMask[tstSqrIdx] & PATHOPT_BLOCKED) != 0)
		return;
	if (blockStates.fCost[tstSqrIdx] > (COSTMOD * blockStates.fCost[prvSqrIdx]))
		return;

	const float3& p2 = foundPath.path[foundPath.path.size() - 3];
	      float3& p1 = foundPath.path[foundPath.path.size() - 2];
	const float3& p0 = foundPath.path[foundPath.path.size() - 1];

	FixupPath3Pts(moveDef, p0, p1, p2);
}

/*
 * This function takes the current and previous two waypoints and detects when they form a
 * "soft" (45 degrees, i.e. north-then-northwest) curve. If so, it then smooths the middle
 * waypoint to decrease the angle between p1-p2 and p2-p0. Hard turns like north-then-west
 * can and will not be smoothed.
 */
void CPathFinder::AdjustFoundPath(
	const MoveDef& moveDef,
	IPath::Path& foundPath,
	const int2& p1, // two squares before p0 (current)
	const int2& p2, // one square before p0 (current)
	const int2& p0
) const {
	int2 curDir = (p2 - p0);
	int2 prvDir = (p1 - p0) - curDir; // FIXME?
	assert((curDir.x % PATH_NODE_SPACING) == 0);
	assert((curDir.y % PATH_NODE_SPACING) == 0);
	assert((prvDir.x % PATH_NODE_SPACING) == 0);
	assert((prvDir.y % PATH_NODE_SPACING) == 0);
	curDir /= PATH_NODE_SPACING;
	prvDir /= PATH_NODE_SPACING;

	if (foundPath.path.size() < 3)
		return;

	for (unsigned pathDir = PATHDIR_LEFT; pathDir < PATH_DIRECTIONS; ++pathDir) {
		// find the pathDir matching the p2-p0 segment
		if (curDir != PE_DIRECTION_VECTORS[pathDir])
			continue;

		const bool lhTurn = (prvDir == PE_DIRECTION_VECTORS[(pathDir + PATH_DIRECTIONS - 1) % PATH_DIRECTIONS]);
		const bool rhTurn = (prvDir == PE_DIRECTION_VECTORS[(pathDir                   + 1) % PATH_DIRECTIONS]);

		if (rhTurn || lhTurn)
			SmoothMidWaypoint(p0 + (prvDir * PATH_NODE_SPACING), p2, moveDef, foundPath);

		break;
	}
}