1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cstdlib>
#include "PathFinderDef.h"
#include "PathConstants.h"
#include "Sim/MoveTypes/MoveDefHandler.h"
constexpr float MAX_RAW_PATH_LEN = 1.8e19; //math::sqrt(std::numeric_limits<float>::max())
CPathFinderDef::CPathFinderDef(const float3& startPos, const float3& goalPos, float goalRadius, float sqGoalDistance)
: wsStartPos(startPos)
, wsGoalPos(goalPos)
, sqGoalRadius(goalRadius * goalRadius)
, maxRawPathLen(MAX_RAW_PATH_LEN)
, minRawSpeedMod(0.0f)
, constraintDisabled(false)
, skipSubSearches(false)
, testMobile(true)
, needPath(true)
// if true, units will not even try to move if their max-res
// PF goal is inside (or surrounded by) an impassable region
// if false, units will get as close as possible and may end
// up stuck or flip-flop between waypoints from backtracking
//
// false mirrors the PE behavior when requesting (not while
// regenerating after a terrain change) paths, so prefer to
// keep PF and PE in sync
, exactPath(false)
, allowRawPath(false)
, allowDefPath(true)
, dirIndependent(false)
, synced(true)
{
startSquareX = wsStartPos.x / SQUARE_SIZE;
startSquareZ = wsStartPos.z / SQUARE_SIZE;
goalSquareX = wsGoalPos.x / SQUARE_SIZE;
goalSquareZ = wsGoalPos.z / SQUARE_SIZE;
// make sure that the goal can be reached with 2-square resolution
sqGoalRadius = std::max(sqGoalRadius, SQUARE_SIZE * SQUARE_SIZE * 2.0f);
startInGoalRadius = (sqGoalRadius >= sqGoalDistance);
}
// returns true when the goal is within our defined range
bool CPathFinderDef::IsGoal(uint32_t squareX, uint32_t squareZ) const {
return (SquareToFloat3(squareX, squareZ).SqDistance2D(wsGoalPos) <= sqGoalRadius);
}
// returns distance to goal center in heightmap-squares
float CPathFinderDef::Heuristic(
uint32_t srcSquareX,
uint32_t srcSquareZ,
uint32_t tgtSquareX,
uint32_t tgtSquareZ,
uint32_t blockSize
) const {
(void) blockSize;
const float dx = std::abs(int(srcSquareX) - int(tgtSquareX));
const float dz = std::abs(int(srcSquareZ) - int(tgtSquareZ));
// grid is 8-connected, so use octile distance metric
constexpr const float C1 = (1.0f / PATH_NODE_SPACING);
constexpr const float C2 = (1.4142f / PATH_NODE_SPACING) - (2.0f * C1);
return ((dx + dz) * C1 + std::min(dx, dz) * C2);
}
// returns if the goal is inaccessable: this is
// true if the goal area is "small" and blocked
bool CPathFinderDef::IsGoalBlocked(const MoveDef& moveDef, const CMoveMath::BlockType& blockMask, const CSolidObject* owner) const {
const float r0 = SQUARE_SIZE * SQUARE_SIZE * 4.0f; // same as (SQUARE_SIZE*2)^2
const float r1 = ((moveDef.xsize * SQUARE_SIZE) >> 1) * ((moveDef.zsize * SQUARE_SIZE) >> 1) * 1.5f;
if (sqGoalRadius >= r0 && sqGoalRadius > r1)
return false;
return ((CMoveMath::IsBlocked(moveDef, wsGoalPos, owner) & blockMask) != 0);
}
int2 CPathFinderDef::GoalSquareOffset(uint32_t blockSize) const {
const uint32_t blockPixelSize = blockSize * SQUARE_SIZE;
int2 offset;
offset.x = (unsigned(wsGoalPos.x) % blockPixelSize) / SQUARE_SIZE;
offset.y = (unsigned(wsGoalPos.z) % blockPixelSize) / SQUARE_SIZE;
return offset;
}
CCircularSearchConstraint::CCircularSearchConstraint(
const float3& start,
const float3& goal,
float goalRadius,
float searchSize,
uint32_t extraSize
): CPathFinderDef(start, goal, goalRadius, start.SqDistance2D(goal))
{
// calculate the center and radius of the constrained area
const uint32_t startX = start.x / SQUARE_SIZE;
const uint32_t startZ = start.z / SQUARE_SIZE;
const float3 halfWay = (start + goal) * 0.5f;
halfWayX = halfWay.x / SQUARE_SIZE;
halfWayZ = halfWay.z / SQUARE_SIZE;
const int dx = startX - halfWayX;
const int dz = startZ - halfWayZ;
searchRadiusSq = dx * dx + dz * dz;
searchRadiusSq *= (searchSize * searchSize);
searchRadiusSq += extraSize;
}
CRectangularSearchConstraint::CRectangularSearchConstraint(
const float3 startPos,
const float3 goalPos,
float sqRadius,
uint32_t blockSize
): CPathFinderDef(startPos, goalPos, 0.0f, startPos.SqDistance2D(goalPos))
{
sqGoalRadius = std::max(sqRadius, sqGoalRadius);
// construct the rectangular areas containing {start,goal}Pos
// (nodes are constrained to these when a PE uses the max-res
// PF to cache costs)
uint32_t startBlockX = startPos.x / SQUARE_SIZE;
uint32_t startBlockZ = startPos.z / SQUARE_SIZE;
uint32_t goalBlockX = goalPos.x / SQUARE_SIZE;
uint32_t goalBlockZ = goalPos.z / SQUARE_SIZE;
// align to PE-grid
startBlockX -= (startBlockX % blockSize);
startBlockZ -= (startBlockZ % blockSize);
goalBlockX -= ( goalBlockX % blockSize);
goalBlockZ -= ( goalBlockZ % blockSize);
startBlockRect.x1 = startBlockX;
startBlockRect.z1 = startBlockZ;
startBlockRect.x2 = startBlockX + blockSize;
startBlockRect.z2 = startBlockZ + blockSize;
goalBlockRect.x1 = goalBlockX;
goalBlockRect.z1 = goalBlockZ;
goalBlockRect.x2 = goalBlockX + blockSize;
goalBlockRect.z2 = goalBlockZ + blockSize;
}
|