File: Node.cpp

package info (click to toggle)
spring 106.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 55,316 kB
  • sloc: cpp: 543,954; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (880 lines) | stat: -rw-r--r-- 28,893 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include <cassert>
#include <limits>

#include "lib/streflop/streflop_cond.h"

#include "Node.hpp"
#include "NodeLayer.hpp"
#include "PathDefines.hpp"
#include "PathManager.hpp"

#include "Map/MapInfo.h"
#include "Map/ReadMap.h"
#include "Sim/Misc/GlobalConstants.h"

unsigned int QTPFS::QTNode::MIN_SIZE_X;
unsigned int QTPFS::QTNode::MIN_SIZE_Z;
unsigned int QTPFS::QTNode::MAX_DEPTH;



void QTPFS::INode::SetPathCost(unsigned int type, float cost) {
	#ifndef QTPFS_ENABLE_MICRO_OPTIMIZATION_HACKS
	switch (type) {
		case NODE_PATH_COST_F: { fCost = cost; return; } break;
		case NODE_PATH_COST_G: { gCost = cost; return; } break;
		case NODE_PATH_COST_H: { hCost = cost; return; } break;
	}

	assert(false);
	#else
	assert(&gCost == &fCost + 1);
	assert(&hCost == &gCost + 1);
	assert(type <= NODE_PATH_COST_H);

	*(&fCost + type) = cost;
	#endif
}

float QTPFS::INode::GetPathCost(unsigned int type) const {
	#ifndef QTPFS_ENABLE_MICRO_OPTIMIZATION_HACKS
	switch (type) {
		case NODE_PATH_COST_F: { return fCost; } break;
		case NODE_PATH_COST_G: { return gCost; } break;
		case NODE_PATH_COST_H: { return hCost; } break;
	}

	assert(false);
	return 0.0f;
	#else
	assert(&gCost == &fCost + 1);
	assert(&hCost == &gCost + 1);
	assert(type <= NODE_PATH_COST_H);

	return *(&fCost + type);
	#endif
}

float QTPFS::INode::GetDistance(const INode* n, unsigned int type) const {
	const float dx = float(xmid() * SQUARE_SIZE) - float(n->xmid() * SQUARE_SIZE);
	const float dz = float(zmid() * SQUARE_SIZE) - float(n->zmid() * SQUARE_SIZE);

	switch (type) {
		case NODE_DIST_EUCLIDEAN: { return (math::sqrt((dx * dx) + (dz * dz))); } break;
		case NODE_DIST_MANHATTAN: { return (math::fabs(dx) + math::fabs(dz)); } break;
	}

	return -1.0f;
}

unsigned int QTPFS::INode::GetNeighborRelation(const INode* ngb) const {
	unsigned int rel = 0;

	rel |= ((xmin() == ngb->xmax()) * REL_NGB_EDGE_L);
	rel |= ((xmax() == ngb->xmin()) * REL_NGB_EDGE_R);
	rel |= ((zmin() == ngb->zmax()) * REL_NGB_EDGE_T);
	rel |= ((zmax() == ngb->zmin()) * REL_NGB_EDGE_B);

	return rel;
}

unsigned int QTPFS::INode::GetRectangleRelation(const SRectangle& r) const {
	// NOTE: we consider "interior" to be the set of all
	// legal indices, and conversely "exterior" the set
	// of all illegal indices (min-edges are inclusive,
	// max-edges are exclusive)
	//
	if ((r.x1 >= xmin() && r.x2 <  xmax()) && (r.z1 >= zmin() && r.z2 <  zmax())) { return REL_RECT_INTERIOR_NODE; }
	if ((r.x1 >= xmax() || r.x2 <  xmin()) || (r.z1 >= zmax() || r.z2 <  zmin())) { return REL_RECT_EXTERIOR_NODE; }
	if ((r.x1 <  xmin() && r.x2 >= xmax()) && (r.z1 <  zmin() && r.z2 >= zmax())) { return REL_NODE_INTERIOR_RECT; }

	return REL_NODE_OVERLAPS_RECT;
}

float2 QTPFS::INode::GetNeighborEdgeTransitionPoint(const INode* ngb, const float3& pos, float alpha) const {
	float2 p;

	const unsigned int
		minx = std::max(xmin(), ngb->xmin()),
		maxx = std::min(xmax(), ngb->xmax());
	const unsigned int
		minz = std::max(zmin(), ngb->zmin()),
		maxz = std::min(zmax(), ngb->zmax());

	// NOTE:
	//     do not use integer arithmetic for the mid-points,
	//     the path-backtrace expects all waypoints to have
	//     unique world-space coordinates (ortho-projection
	//     mode is broken in that regard) and this would not
	//     hold for a path through multiple neighboring nodes
	//     with xsize and/or zsize equal to 1 heightmap square
	#ifndef QTPFS_ORTHOPROJECTED_EDGE_TRANSITIONS
	const float
		midx = minx * (1.0f - alpha) + maxx * (0.0f + alpha),
		midz = minz * (1.0f - alpha) + maxz * (0.0f + alpha);
	#endif

	switch (GetNeighborRelation(ngb)) {
		// corners
		case REL_NGB_EDGE_T | REL_NGB_EDGE_L: { p.x = xmin() * SQUARE_SIZE; p.y = zmin() * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_T | REL_NGB_EDGE_R: { p.x = xmax() * SQUARE_SIZE; p.y = zmin() * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_B | REL_NGB_EDGE_R: { p.x = xmax() * SQUARE_SIZE; p.y = zmax() * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_B | REL_NGB_EDGE_L: { p.x = xmin() * SQUARE_SIZE; p.y = zmax() * SQUARE_SIZE; } break;

		#ifdef QTPFS_ORTHOPROJECTED_EDGE_TRANSITIONS
		#define CAST static_cast<unsigned int>

		// edges
		// clamp <pos> (assumed to be inside <this>) to
		// the shared-edge bounds and ortho-project it
		case REL_NGB_EDGE_T: { p.x = Clamp(CAST(pos.x / SQUARE_SIZE), minx, maxx) * SQUARE_SIZE; p.y = minz * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_B: { p.x = Clamp(CAST(pos.x / SQUARE_SIZE), minx, maxx) * SQUARE_SIZE; p.y = maxz * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_R: { p.y = Clamp(CAST(pos.z / SQUARE_SIZE), minz, maxz) * SQUARE_SIZE; p.x = maxx * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_L: { p.y = Clamp(CAST(pos.z / SQUARE_SIZE), minz, maxz) * SQUARE_SIZE; p.x = minx * SQUARE_SIZE; } break;

		// <ngb> had better be an actual neighbor
		case 0: { assert(false); } break;

		#undef CAST
		#else

		// edges
		case REL_NGB_EDGE_T:                  { p.x = midx   * SQUARE_SIZE; p.y = zmin() * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_R:                  { p.x = xmax() * SQUARE_SIZE; p.y = midz   * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_B:                  { p.x = midx   * SQUARE_SIZE; p.y = zmax() * SQUARE_SIZE; } break;
		case REL_NGB_EDGE_L:                  { p.x = xmin() * SQUARE_SIZE; p.y = midz   * SQUARE_SIZE; } break;

		// <ngb> had better be an actual neighbor
		case 0: { assert(false); } break;

		#endif
	}

	return p;
}

// clip an OVERLAPPING rectangle against our boundaries
//
// NOTE:
//     the rectangle is only ASSUMED to not lie completely
//     inside <this> (in which case this function acts as
//     no-op), we do not explicitly test
//
//     both REL_RECT_EXTERIOR_NODE and REL_NODE_OVERLAPS_RECT
//     relations can produce zero- or negative-area rectangles
//     when clipping --> need to ensure to not leave move-cost
//     at its default value (0.0, which no node can logically
//     have)
//
SRectangle QTPFS::INode::ClipRectangle(const SRectangle& r) const {
	SRectangle cr = r;
	cr.x1 = std::max(int(xmin()), r.x1);
	cr.z1 = std::max(int(zmin()), r.z1);
	cr.x2 = std::min(int(xmax()), r.x2);
	cr.z2 = std::min(int(zmax()), r.z2);
	return cr;
}






void QTPFS::QTNode::InitStatic() {
	MIN_SIZE_X = std::max(1u, mapInfo->pfs.qtpfs_constants.minNodeSizeX);
	MIN_SIZE_Z = std::max(1u, mapInfo->pfs.qtpfs_constants.minNodeSizeZ);
	MAX_DEPTH  = std::max(1u, mapInfo->pfs.qtpfs_constants.maxNodeDepth);
}

void QTPFS::QTNode::Init(
	const QTNode* /*parent*/,
	unsigned int nn,
	unsigned int x1, unsigned int z1,
	unsigned int x2, unsigned int z2
) {
	assert(MIN_SIZE_X > 0);
	assert(MIN_SIZE_Z > 0);

	nodeNumber = nn;
	heapIndex = -1u;

	searchState  =   0;
	currMagicNum =   0;
	prevMagicNum = -1u;

	// for leafs, all children remain NULL
	childBaseIndex = -1u;

	_xminxmax = (x2 << 16) | (x1 << 0);
	_zminzmax = (z2 << 16) | (z1 << 0);

	assert(x2 < (1 << 16));
	assert(z2 < (1 << 16));
	assert(xsize() != 0);
	assert(zsize() != 0);

	fCost = 0.0f;
	gCost = 0.0f;
	hCost = 0.0f;

	speedModSum =  0.0f;
	speedModAvg =  0.0f;
	moveCostAvg = -1.0f;

	prevNode = nullptr;

	neighbors.clear();
	netpoints.clear();
}



std::uint64_t QTPFS::QTNode::GetMemFootPrint(const NodeLayer& nl) const {
	std::uint64_t memFootPrint = sizeof(QTNode);

	if (IsLeaf()) {
		memFootPrint += (neighbors.size() * sizeof(decltype(neighbors)::value_type));
		memFootPrint += (netpoints.size() * sizeof(decltype(netpoints)::value_type));
	} else {
		for (unsigned int i = 0; i < QTNODE_CHILD_COUNT; i++) {
			memFootPrint += (nl.GetPoolNode(childBaseIndex + i)->GetMemFootPrint(nl));
		}
	}

	return memFootPrint;
}

std::uint64_t QTPFS::QTNode::GetCheckSum(const NodeLayer& nl) const {
	std::uint64_t sum = 0;

	{
		const unsigned char* minByte = reinterpret_cast<const unsigned char*>(&nodeNumber);
		const unsigned char* maxByte = reinterpret_cast<const unsigned char*>(&hCost) + sizeof(hCost);

		assert(minByte < maxByte);

		// INode bytes (unpadded)
		for (const unsigned char* byte = minByte; byte != maxByte; byte++) {
			sum ^= ((((byte + 1) - minByte) << 8) * (*byte));
		}
	}
	{
		const unsigned char* minByte = reinterpret_cast<const unsigned char*>(&_xminxmax);
		const unsigned char* maxByte = reinterpret_cast<const unsigned char*>(&prevMagicNum) + sizeof(prevMagicNum);

		assert(minByte < maxByte);

		// QTNode bytes (unpadded)
		for (const unsigned char* byte = minByte; byte != maxByte; byte++) {
			sum ^= ((((byte + 1) - minByte) << 8) * (*byte));
		}
	}

	if (!IsLeaf()) {
		for (unsigned int n = 0; n < QTNODE_CHILD_COUNT; n++) {
			sum ^= (((nodeNumber << 8) + 1) * nl.GetPoolNode(childBaseIndex + n)->GetCheckSum(nl));
		}
	}

	return sum;
}



bool QTPFS::QTNode::CanSplit(unsigned int depth, bool forced) const {
	// NOTE: caller must additionally check IsLeaf() before calling Split()
	if (forced)
		return ((xsize() >> 1) > 0 && (zsize() >> 1) > 0);

	if (depth >= MAX_DEPTH)
		return false;

	#ifdef QTPFS_CONSERVATIVE_NODE_SPLITS
	if (xsize() <= MIN_SIZE_X)
		return false;
	if (zsize() <= MIN_SIZE_Z)
		return false;
	#else
	// aggressive splitting, important with respect to yardmaps
	// (one yardmap square represents four heightmap squares; a
	// node represents MIN_SIZE_X by MIN_SIZE_Z of such squares)
	if (((xsize() >> 1) ==          0) || ((zsize() >> 1) ==          0)) return false;
	if (( xsize()       <= MIN_SIZE_X) && ( zsize()       <= MIN_SIZE_Z)) return false;
	#endif

	return true;
}



bool QTPFS::QTNode::Split(NodeLayer& nl, unsigned int depth, bool forced) {
	if (!CanSplit(depth, forced))
		return false;

	// can only split leaf-nodes (ie. nodes with no children)
	assert(IsLeaf());

	unsigned int childIndices[QTNODE_CHILD_COUNT];

	// silently refuse to split further if pool is exhausted
	if ((childIndices[0] = nl.AllocPoolNode(this, GetChildID(NODE_IDX_TL),  xmin(), zmin(),  xmid(), zmid())) == -1u) return false;
	if ((childIndices[1] = nl.AllocPoolNode(this, GetChildID(NODE_IDX_TR),  xmid(), zmin(),  xmax(), zmid())) == -1u) return false;
	if ((childIndices[2] = nl.AllocPoolNode(this, GetChildID(NODE_IDX_BR),  xmid(), zmid(),  xmax(), zmax())) == -1u) return false;
	if ((childIndices[3] = nl.AllocPoolNode(this, GetChildID(NODE_IDX_BL),  xmin(), zmid(),  xmid(), zmax())) == -1u) return false;

	assert(childIndices[1] == (childIndices[0] + 1));
	assert(childIndices[2] == (childIndices[1] + 1));
	assert(childIndices[3] == (childIndices[2] + 1));

	childBaseIndex = childIndices[0];

	neighbors.clear();
	netpoints.clear();

	nl.SetNumLeafNodes(nl.GetNumLeafNodes() + (4 - 1));
	assert(!IsLeaf());
	return true;
}

bool QTPFS::QTNode::Merge(NodeLayer& nl) {
	if (IsLeaf())
		return false;

	neighbors.clear();
	// netpoints.clear();

	// get rid of our children completely
	for (unsigned int i = 0; i < QTNODE_CHILD_COUNT; i++) {
		nl.GetPoolNode(childBaseIndex + i)->Merge(nl);
	}

	// NOTE: return indices in reverse order (BL, BR, TR, TL) of allocation by Split
	nl.FreePoolNode(childBaseIndex + 3);
	nl.FreePoolNode(childBaseIndex + 2);
	nl.FreePoolNode(childBaseIndex + 1);
	nl.FreePoolNode(childBaseIndex + 0);

	childBaseIndex = -1u;

	nl.SetNumLeafNodes(nl.GetNumLeafNodes() - (4 - 1));
	assert(IsLeaf());
	return true;
}






#ifdef QTPFS_SLOW_ACCURATE_TESSELATION
	// re-tesselate a tree from the deepest node <n> that contains
	// rectangle <r> (<n> will be found from any higher node passed
	// in)
	//
	// this code can be VERY slow in the worst-case (eg. when <r>
	// overlaps all four children of the ROOT node), but minimizes
	// the overall number of nodes in the tree at any given time
	void QTPFS::QTNode::PreTesselate(NodeLayer& nl, const SRectangle& r, SRectangle& ur, unsigned int depth) {
		bool cont = false;

		if (!IsLeaf()) {
			for (unsigned int i = 0; i < QTNODE_CHILD_COUNT; i++) {
				QTNode* cn = nl.GetPoolNode(childBaseIndex + i);

				if ((cont |= (cn->GetRectangleRelation(r) == REL_RECT_INTERIOR_NODE))) {
					// only need to descend down one branch
					cn->PreTesselate(nl, r, ur, depth + 1);
					break;
				}
			}
		}

		if (!cont) {
			ur.x1 = std::min(ur.x1, int(xmin()));
			ur.z1 = std::min(ur.z1, int(zmin()));
			ur.x2 = std::max(ur.x2, int(xmax()));
			ur.z2 = std::max(ur.z2, int(zmax()));

			Merge(nl);
			Tesselate(nl, r, depth);
		}
	}

#else

	void QTPFS::QTNode::PreTesselate(NodeLayer& nl, const SRectangle& r, SRectangle& ur, unsigned int depth) {
		const unsigned int rel = GetRectangleRelation(r);

		// use <r> if it is fully inside <this>, otherwise clip against our edges
		const SRectangle& cr = (rel != REL_RECT_INTERIOR_NODE)? ClipRectangle(r): r;

		if ((cr.x2 - cr.x1) <= 0 || (cr.z2 - cr.z1) <= 0)
			return;

		// continue recursion while our CHILDREN are still larger than the clipped rectangle
		//
		// NOTE: this is a trade-off between minimizing the number of leaf-nodes (achieved by
		// re-tesselating in its entirety the deepest node that fully contains <r>) and cost
		// of re-tesselating (which grows as the node-count decreases, kept under control by
		// breaking <r> up into pieces while descending further)
		//
		const bool leaf = IsLeaf();
		const bool cont = (rel == REL_RECT_INTERIOR_NODE) ||
			(((xsize() >> 1) > (cr.x2 - cr.x1)) &&
			 ((zsize() >> 1) > (cr.z2 - cr.z1)));

		if (leaf || !cont) {
			// extend a bounding box around every
			// node modified during re-tesselation
			ur.x1 = std::min(ur.x1, int(xmin()));
			ur.z1 = std::min(ur.z1, int(zmin()));
			ur.x2 = std::max(ur.x2, int(xmax()));
			ur.z2 = std::max(ur.z2, int(zmax()));

			Merge(nl);
			Tesselate(nl, cr, depth);
			return;
		}

		for (unsigned int i = 0; i < QTNODE_CHILD_COUNT; i++) {
			nl.GetPoolNode(childBaseIndex + i)->PreTesselate(nl, cr, ur, depth + 1);
		}
	}

#endif



void QTPFS::QTNode::Tesselate(NodeLayer& nl, const SRectangle& r, unsigned int depth) {
	unsigned int numNewBinSquares = 0; // nr. of squares in <r> that changed bin after deformation
	unsigned int numDifBinSquares = 0; // nr. of different bin-types across all squares within <r>
	unsigned int numClosedSquares = 0;

	// if true, we are at the bottom of the recursion
	bool registerNode = true;
	bool wantSplit = false;
	bool needSplit = false;

	// if we just entered Tesselate from PreTesselate, <this> was
	// merged and we need to update squares across the entire node
	//
	// if we entered from a higher-level Tesselate, <this> is newly
	// allocated and we STILL need to update across the entire node
	//
	// this means the rectangle is actually irrelevant: only use it
	// has is that numNewBinSquares can be calculated for area under
	// rectangle rather than full node
	//
	// we want to *keep* splitting so long as not ALL squares
	// within <r> share the SAME bin, OR we keep finding one
	// that SWITCHED bins after the terrain change (we already
	// know this is true for the entire rectangle or we would
	// not have reached PreTesselate)
	//
	// NOTE: during tree construction, numNewBinSquares is ALWAYS
	// non-0 for the entire map-rectangle (see NodeLayer::Update)
	//
	// NOTE: if <r> fully overlaps <this>, then splitting is *not*
	// technically required whenever numRefBinSquares is zero, ie.
	// when ALL squares in <r> changed bins in unison
	//
	UpdateMoveCost(nl, r, numNewBinSquares, numDifBinSquares, numClosedSquares, wantSplit, needSplit);

	if ((wantSplit && Split(nl, depth, false)) || (needSplit && Split(nl, depth, true))) {
		registerNode = false;

		for (unsigned int i = 0; i < QTNODE_CHILD_COUNT; i++) {
			QTNode* cn = nl.GetPoolNode(childBaseIndex + i);
			SRectangle cr = cn->ClipRectangle(r);

			cn->Tesselate(nl, cr, depth + 1);
			assert(cn->GetMoveCost() != -1.0f);
		}
	}

	if (!registerNode)
		return;

	nl.RegisterNode(this);
}

bool QTPFS::QTNode::UpdateMoveCost(
	const NodeLayer& nl,
	const SRectangle& r,
	unsigned int& numNewBinSquares,
	unsigned int& numDifBinSquares,
	unsigned int& numClosedSquares,
	bool& wantSplit,
	bool& needSplit
) {
	const std::vector<NodeLayer::SpeedBinType>& oldSpeedBins = nl.GetOldSpeedBins();
	const std::vector<NodeLayer::SpeedBinType>& curSpeedBins = nl.GetCurSpeedBins();
	const std::vector<NodeLayer::SpeedModType>& oldSpeedMods = nl.GetOldSpeedMods();
	const std::vector<NodeLayer::SpeedModType>& curSpeedMods = nl.GetCurSpeedMods();

	const NodeLayer::SpeedBinType refSpeedBin = curSpeedBins[zmin() * mapDims.mapx + xmin()];

	// <this> can either just have been merged or added as
	// new child of split parent; in the former case we can
	// restrict ourselves to <r> and update the sum in part
	// (as well as checking homogeneousness just for squares
	// in <r> with a single reference point outside it)
	assert(moveCostAvg == -1.0f || moveCostAvg > 0.0f);

	if (false && moveCostAvg > 0.0f) {
		// just merged, so <r> is fully inside <this>
		//
		// the reference-square (xmin, zmin) MUST lie
		// outside <r> when <r> does not cover <this>
		// 100%, otherwise we would find a value of 0
		// for numDifBinSquares in some situations
		assert((r.x2 - r.x1) >= 0);
		assert((r.z2 - r.z1) >= 0);

		const unsigned int minx = std::max(r.x1, int(xmin()));
		const unsigned int maxx = std::min(r.x2, int(xmax()));
		const unsigned int minz = std::max(r.z1, int(zmin()));
		const unsigned int maxz = std::min(r.z2, int(zmax()));

		for (unsigned int hmz = minz; hmz < maxz; hmz++) {
			for (unsigned int hmx = minx; hmx < maxx; hmx++) {
				const unsigned int sqrIdx = hmz * mapDims.mapx + hmx;

				const NodeLayer::SpeedBinType oldSpeedBin = oldSpeedBins[sqrIdx];
				const NodeLayer::SpeedBinType curSpeedBin = curSpeedBins[sqrIdx];

				numNewBinSquares += int(curSpeedBin != oldSpeedBin);
				numDifBinSquares += int(curSpeedBin != refSpeedBin);
				numClosedSquares += int(curSpeedMods[sqrIdx] <= 0);

				speedModSum -= (oldSpeedMods[sqrIdx] / float(NodeLayer::MaxSpeedModTypeValue()));
				speedModSum += (curSpeedMods[sqrIdx] / float(NodeLayer::MaxSpeedModTypeValue()));

				assert(speedModSum >= 0.0f);
			}
		}
	} else {
		speedModSum = 0.0f;

		for (unsigned int hmz = zmin(); hmz < zmax(); hmz++) {
			for (unsigned int hmx = xmin(); hmx < xmax(); hmx++) {
				const unsigned int sqrIdx = hmz * mapDims.mapx + hmx;

				const NodeLayer::SpeedBinType oldSpeedBin = oldSpeedBins[sqrIdx];
				const NodeLayer::SpeedBinType curSpeedBin = curSpeedBins[sqrIdx];

				numNewBinSquares += int(curSpeedBin != oldSpeedBin);
				numDifBinSquares += int(curSpeedBin != refSpeedBin);
				numClosedSquares += int(curSpeedMods[sqrIdx] <= 0);

				speedModSum += (curSpeedMods[sqrIdx] / float(NodeLayer::MaxSpeedModTypeValue()));
			}
		}
	}

	// (re-)calculate the average cost of this node
	assert(speedModSum >= 0.0f);

	speedModAvg = speedModSum / area();
	moveCostAvg = (speedModAvg <= 0.001f)? QTPFS_POSITIVE_INFINITY: (1.0f / speedModAvg);

	// no node can have ZERO traversal cost
	assert(moveCostAvg > 0.0f);

	wantSplit |= (numDifBinSquares > 0);
	needSplit |= (numClosedSquares > 0 && numClosedSquares < area());

	// if we are not going to tesselate this node further
	// and there is at least one impassable square inside
	// it, make sure the pathfinder will not pick us
	//
	// HACK:
	//   set the cost for *!PARTIALLY!* closed nodes to a
	//   non-infinite value since these are often created
	//   along factory exit lanes (most on non-square maps
	//   or when MIN_SIZE_X > 1 or MIN_SIZE_Z > 1), but do
	//   ensure their cost is still high enough so they get
	//   expanded only when absolutely necessary
	//
	//   units with footprint dimensions equal to the size
	//   of a lane would otherwise be unable to find a path
	//   out of their factories
	//
	//   this is crucial for handling the squares underneath
	//   static obstacles (eg. factories) if MIN_SIZE_* != 1
	if (numClosedSquares > 0) {
		if (numClosedSquares < area()) {
			moveCostAvg = QTPFS_CLOSED_NODE_COST * (numClosedSquares / float(xsize() * xsize()));
		} else {
			moveCostAvg = QTPFS_POSITIVE_INFINITY;
		}
	}

	return (wantSplit || needSplit);
}






// get the maximum number of neighbors this node
// can have, based on its position / size and the
// assumption that all neighbors are 1x1
//
// NOTE: this intentionally does not count corners
unsigned int QTPFS::QTNode::GetMaxNumNeighbors() const {
	unsigned int n = 0;

	if (xmin() > (               0)) { n += zsize(); } // count EDGE_L ngbs
	if (xmax() < (mapDims.mapx - 1)) { n += zsize(); } // count EDGE_R ngbs
	if (zmin() > (               0)) { n += xsize(); } // count EDGE_T ngbs
	if (zmax() < (mapDims.mapy - 1)) { n += xsize(); } // count EDGE_B ngbs

	return n;
}





void QTPFS::QTNode::Serialize(std::fstream& fStream, NodeLayer& nodeLayer, unsigned int* streamSize, unsigned int depth, bool readMode) {
	// overwritten when de-serializing
	unsigned int numChildren = QTNODE_CHILD_COUNT * (1 - int(IsLeaf()));

	(*streamSize) += (3 * sizeof(unsigned int));
	(*streamSize) += (3 * sizeof(float));

	if (readMode) {
		fStream.read(reinterpret_cast<char*>(&nodeNumber), sizeof(unsigned int));
		fStream.read(reinterpret_cast<char*>(&numChildren), sizeof(unsigned int));
		fStream.read(reinterpret_cast<char*>(&childBaseIndex), sizeof(unsigned int));

		fStream.read(reinterpret_cast<char*>(&speedModAvg), sizeof(float));
		fStream.read(reinterpret_cast<char*>(&speedModSum), sizeof(float));
		fStream.read(reinterpret_cast<char*>(&moveCostAvg), sizeof(float));

		if (numChildren > 0) {
			// re-create child nodes
			assert(IsLeaf());
			Split(nodeLayer, depth, true);
		} else {
			// node was a leaf in an earlier life, register it
			nodeLayer.RegisterNode(this);
		}
	} else {
		fStream.write(reinterpret_cast<const char*>(&nodeNumber), sizeof(unsigned int));
		fStream.write(reinterpret_cast<const char*>(&numChildren), sizeof(unsigned int));
		fStream.write(reinterpret_cast<const char*>(&childBaseIndex), sizeof(unsigned int));

		fStream.write(reinterpret_cast<const char*>(&speedModAvg), sizeof(float));
		fStream.write(reinterpret_cast<const char*>(&speedModSum), sizeof(float));
		fStream.write(reinterpret_cast<const char*>(&moveCostAvg), sizeof(float));
	}

	for (unsigned int i = 0; i < numChildren; i++) {
		nodeLayer.GetPoolNode(childBaseIndex + i)->Serialize(fStream, nodeLayer, streamSize, depth + 1, readMode);
	}
}

unsigned int QTPFS::QTNode::GetNeighbors(const std::vector<INode*>& nodes, std::vector<INode*>& ngbs) {
	#ifdef QTPFS_CONSERVATIVE_NEIGHBOR_CACHE_UPDATES
	UpdateNeighborCache(nodes);
	#endif

	if (!neighbors.empty()) {
		ngbs.clear();
		ngbs.resize(neighbors.size());

		std::copy(neighbors.begin(), neighbors.end(), ngbs.begin());
	}

	return (neighbors.size());
}

const std::vector<QTPFS::INode*>& QTPFS::QTNode::GetNeighbors(const std::vector<INode*>& nodes) {
	#ifdef QTPFS_CONSERVATIVE_NEIGHBOR_CACHE_UPDATES
	UpdateNeighborCache(nodes);
	#endif
	return neighbors;
}

// this is *either* called from ::GetNeighbors when the conservative
// update-scheme is enabled, *or* from PM::ExecQueuedNodeLayerUpdates
// (never both)
bool QTPFS::QTNode::UpdateNeighborCache(const std::vector<INode*>& nodes) {
	assert(IsLeaf());
	assert(!nodes.empty());

	if (prevMagicNum != currMagicNum) {
		prevMagicNum = currMagicNum;

		unsigned int ngbRels = 0;
		unsigned int maxNgbs = GetMaxNumNeighbors();

		// regenerate our neighbor cache
		if (maxNgbs > 0) {
			neighbors.clear();
			neighbors.reserve(maxNgbs + 4);

			netpoints.clear();
			netpoints.reserve(1 + maxNgbs * QTPFS_MAX_NETPOINTS_PER_NODE_EDGE + 4);
			// NOTE: caching ETP's breaks QTPFS_ORTHOPROJECTED_EDGE_TRANSITIONS
			// NOTE: [0] is a reserved index and must always be valid
			netpoints.emplace_back();

			INode* ngb = nullptr;

			if (xmin() > 0) {
				const unsigned int hmx = xmin() - 1;

				// walk along EDGE_L (west) neighbors
				for (unsigned int hmz = zmin(); hmz < zmax(); ) {
					ngb = nodes[hmz * mapDims.mapx + hmx];
					hmz = ngb->zmax();

					neighbors.push_back(ngb);

					for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
						netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngb, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
					}
				}

				ngbRels |= REL_NGB_EDGE_L;
			}
			if (xmax() < static_cast<unsigned int>(mapDims.mapx)) {
				const unsigned int hmx = xmax() + 0;

				// walk along EDGE_R (east) neighbors
				for (unsigned int hmz = zmin(); hmz < zmax(); ) {
					ngb = nodes[hmz * mapDims.mapx + hmx];
					hmz = ngb->zmax();

					neighbors.push_back(ngb);

					for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
						netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngb, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
					}
				}

				ngbRels |= REL_NGB_EDGE_R;
			}

			if (zmin() > 0) {
				const unsigned int hmz = zmin() - 1;

				// walk along EDGE_T (north) neighbors
				for (unsigned int hmx = xmin(); hmx < xmax(); ) {
					ngb = nodes[hmz * mapDims.mapx + hmx];
					hmx = ngb->xmax();

					neighbors.push_back(ngb);

					for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
						netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngb, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
					}
				}

				ngbRels |= REL_NGB_EDGE_T;
			}
			if (zmax() < static_cast<unsigned int>(mapDims.mapy)) {
				const unsigned int hmz = zmax() + 0;

				// walk along EDGE_B (south) neighbors
				for (unsigned int hmx = xmin(); hmx < xmax(); ) {
					ngb = nodes[hmz * mapDims.mapx + hmx];
					hmx = ngb->xmax();

					neighbors.push_back(ngb);

					for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
						netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngb, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
					}
				}

				ngbRels |= REL_NGB_EDGE_B;
			}

			#ifdef QTPFS_CORNER_CONNECTED_NODES
			// top- and bottom-left corners
			if ((ngbRels & REL_NGB_EDGE_L) != 0) {
				if ((ngbRels & REL_NGB_EDGE_T) != 0) {
					const INode* ngbL = nodes[(zmin() + 0) * mapDims.mapx + (xmin() - 1)];
					const INode* ngbT = nodes[(zmin() - 1) * mapDims.mapx + (xmin() + 0)];
						  INode* ngbC = nodes[(zmin() - 1) * mapDims.mapx + (xmin() - 1)];

					// VERT_TL ngb must be distinct from EDGE_L and EDGE_T ngbs
					if (ngbC != ngbL && ngbC != ngbT) {
						if (ngbL->AllSquaresAccessible() && ngbT->AllSquaresAccessible()) {
							neighbors.push_back(ngbC);

							for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
								netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngbC, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
							}
						}
					}
				}
				if ((ngbRels & REL_NGB_EDGE_B) != 0) {
					const INode* ngbL = nodes[(zmax() - 1) * mapDims.mapx + (xmin() - 1)];
					const INode* ngbB = nodes[(zmax() + 0) * mapDims.mapx + (xmin() + 0)];
						  INode* ngbC = nodes[(zmax() + 0) * mapDims.mapx + (xmin() - 1)];

					// VERT_BL ngb must be distinct from EDGE_L and EDGE_B ngbs
					if (ngbC != ngbL && ngbC != ngbB) {
						if (ngbL->AllSquaresAccessible() && ngbB->AllSquaresAccessible()) {
							neighbors.push_back(ngbC);

							for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
								netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngbC, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
							}
						}
					}
				}
			}

			// top- and bottom-right corners
			if ((ngbRels & REL_NGB_EDGE_R) != 0) {
				if ((ngbRels & REL_NGB_EDGE_T) != 0) {
					const INode* ngbR = nodes[(zmin() + 0) * mapDims.mapx + (xmax() + 0)];
					const INode* ngbT = nodes[(zmin() - 1) * mapDims.mapx + (xmax() - 1)];
						  INode* ngbC = nodes[(zmin() - 1) * mapDims.mapx + (xmax() + 0)];

					// VERT_TR ngb must be distinct from EDGE_R and EDGE_T ngbs
					if (ngbC != ngbR && ngbC != ngbT) {
						if (ngbR->AllSquaresAccessible() && ngbT->AllSquaresAccessible()) {
							neighbors.push_back(ngbC);

							for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
								netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngbC, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
							}
						}
					}
				}
				if ((ngbRels & REL_NGB_EDGE_B) != 0) {
					const INode* ngbR = nodes[(zmax() - 1) * mapDims.mapx + (xmax() + 0)];
					const INode* ngbB = nodes[(zmax() + 0) * mapDims.mapx + (xmax() - 1)];
						  INode* ngbC = nodes[(zmax() + 0) * mapDims.mapx + (xmax() + 0)];

					// VERT_BR ngb must be distinct from EDGE_R and EDGE_B ngbs
					if (ngbC != ngbR && ngbC != ngbB) {
						if (ngbR->AllSquaresAccessible() && ngbB->AllSquaresAccessible()) {
							neighbors.push_back(ngbC);

							for (unsigned int i = 0; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
								netpoints.push_back(INode::GetNeighborEdgeTransitionPoint(ngbC, {}, QTPFS_NETPOINT_EDGE_SPACING_SCALE * (i + 1)));
							}
						}
					}
				}
			}
			#endif
		}

		return true;
	}

	return false;
}