File: PathSearch.cpp

package info (click to toggle)
spring 106.0%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 55,316 kB
  • sloc: cpp: 543,954; ansic: 44,800; python: 12,575; java: 12,201; awk: 5,889; sh: 1,796; asm: 1,546; xml: 655; perl: 405; php: 211; objc: 194; makefile: 76; sed: 2
file content (566 lines) | stat: -rw-r--r-- 17,518 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include <cassert>
#include <limits>

#include "PathSearch.hpp"
#include "Path.hpp"
#include "PathCache.hpp"
#include "NodeLayer.hpp"
#include "Sim/Misc/GlobalConstants.h"

#ifdef QTPFS_TRACE_PATH_SEARCHES
#include "Sim/Misc/GlobalSynced.h"
#endif

#include "System/float3.h"

QTPFS::binary_heap<QTPFS::INode*> QTPFS::PathSearch::openNodes;



void QTPFS::PathSearch::Initialize(
	NodeLayer* layer,
	PathCache* cache,
	const float3& sourcePoint,
	const float3& targetPoint,
	const SRectangle& searchArea
) {
	srcPoint = sourcePoint; srcPoint.ClampInBounds();
	tgtPoint = targetPoint; tgtPoint.ClampInBounds();

	nodeLayer = layer;
	pathCache = cache;

	searchRect = searchArea;
	searchExec = nullptr;

	srcNode = nodeLayer->GetNode(srcPoint.x / SQUARE_SIZE, srcPoint.z / SQUARE_SIZE);
	tgtNode = nodeLayer->GetNode(tgtPoint.x / SQUARE_SIZE, tgtPoint.z / SQUARE_SIZE);
	curNode = nullptr;
	nxtNode = nullptr;
	minNode = srcNode;
}

bool QTPFS::PathSearch::Execute(
	unsigned int searchStateOffset,
	unsigned int searchMagicNumber
) {
	searchState = searchStateOffset; // starts at NODE_STATE_OFFSET
	searchMagic = searchMagicNumber; // starts at numTerrainChanges

	haveFullPath = (srcNode == tgtNode);
	havePartPath = false;

	// early-out
	if (haveFullPath)
		return true;

	#ifdef QTPFS_TRACE_PATH_SEARCHES
	searchExec = new PathSearchTrace::Execution(gs->frameNum);
	#endif

	// be as optimistic as possible: assume the remainder of our path will
	// cover only flat terrain with maximum speed-modifier between nxtPoint
	// and tgtPoint
	// this is admissable so long as the map is not LOCALLY changed in such
	// a way as to increase the maximum speedmod beyond the current layer's
	// cached maximum value
	switch (searchType) {
		case PATH_SEARCH_ASTAR:    { hCostMult = 1.0f / nodeLayer->GetMaxRelSpeedMod(); } break;
		case PATH_SEARCH_DIJKSTRA: { hCostMult = 0.0f;                                  } break;
	}

	// allow the search to start from an impassable node (because single
	// nodes can represent many terrain squares, some of which can still
	// be passable and allow a unit to move within a node)
	// NOTE: we need to make sure such paths do not have infinite cost!
	if (srcNode->GetMoveCost() == QTPFS_POSITIVE_INFINITY)
		srcNode->SetMoveCost(0.0f);

	ResetState(srcNode);
	UpdateNode(srcNode, nullptr, 0);

	while (!openNodes.empty()) {
		IterateNodes(nodeLayer->GetNodes());

		#ifdef QTPFS_TRACE_PATH_SEARCHES
		searchExec->AddIteration(searchIter);
		searchIter.Clear();
		#endif

		haveFullPath = (curNode == tgtNode);
		havePartPath = (minNode != srcNode);

		if (haveFullPath)
			openNodes.reset();
	}

	if (srcNode->GetMoveCost() == 0.0f)
		srcNode->SetMoveCost(QTPFS_POSITIVE_INFINITY);


	#ifdef QTPFS_SUPPORT_PARTIAL_SEARCHES
	// adjust the target-point if we only got a partial result
	// NOTE:
	//   should adjust GMT::goalPos accordingly, otherwise
	//   units will end up spinning in-place over the last
	//   waypoint (since "atGoal" can never become true)
	if (!haveFullPath && havePartPath) {
		tgtNode    = minNode;
		tgtPoint.x = minNode->xmid() * SQUARE_SIZE;
		tgtPoint.z = minNode->zmid() * SQUARE_SIZE;
	}
	#endif

	return (haveFullPath || havePartPath);
}



void QTPFS::PathSearch::ResetState(INode* node) {
	// will be copied into srcNode by UpdateNode()
	netPoints[0] = {srcPoint.x, srcPoint.z};

	gDists[0] = 0.0f;
	hDists[0] = srcPoint.distance(tgtPoint);
	gCosts[0] = 0.0f;
	hCosts[0] = hDists[0] * hCostMult;

	for (unsigned int i = 1; i < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; i++) {
		netPoints[i] = {0.0f, 0.0f};

		gDists[i] = 0.0f;
		hDists[i] = 0.0f;
		gCosts[i] = 0.0f;
		hCosts[i] = 0.0f;
	}

	openNodes.reset();
	openNodes.push(node);
}

void QTPFS::PathSearch::UpdateNode(INode* nextNode, INode* prevNode, unsigned int netPointIdx) {
	// NOTE:
	//   the heuristic must never over-estimate the distance,
	//   but this is *impossible* to achieve on a non-regular
	//   grid on which any node only has an average move-cost
	//   associated with it --> paths will be "nearly optimal"
	nextNode->SetPrevNode(prevNode);
	nextNode->SetPathCosts(gCosts[netPointIdx], hCosts[netPointIdx]);
	nextNode->SetSearchState(searchState | NODE_STATE_OPEN);
	nextNode->SetNeighborEdgeTransitionPoint(0, netPoints[netPointIdx]);
}

void QTPFS::PathSearch::IterateNodes(const std::vector<INode*>& allNodes) {
	curNode = openNodes.top();
	curNode->SetSearchState(searchState | NODE_STATE_CLOSED);
	#ifdef QTPFS_CONSERVATIVE_NEIGHBOR_CACHE_UPDATES
	// in the non-conservative case, this is done from
	// NodeLayer::ExecNodeNeighborCacheUpdates instead
	curNode->SetMagicNumber(searchMagic);
	#endif

	openNodes.pop();
	openNodes.check_heap_property(0);

	#ifdef QTPFS_TRACE_PATH_SEARCHES
	searchIter.SetPoppedNodeIdx(curNode->zmin() * mapDims.mapx + curNode->xmin());
	#endif

	if (curNode == tgtNode)
		return;
	if (curNode->AllSquaresImpassable())
		return;

	if (curNode->xmid() < searchRect.x1) return;
	if (curNode->zmid() < searchRect.z1) return;
	if (curNode->xmid() > searchRect.x2) return;
	if (curNode->zmid() > searchRect.z2) return;

	#ifdef QTPFS_SUPPORT_PARTIAL_SEARCHES
	// remember the node with lowest h-cost in case the search fails to reach tgtNode
	if (curNode->GetPathCost(NODE_PATH_COST_H) < minNode->GetPathCost(NODE_PATH_COST_H))
		minNode = curNode;
	#endif

	IterateNodeNeighbors(curNode->GetNeighbors(allNodes));
}

void QTPFS::PathSearch::IterateNodeNeighbors(const std::vector<INode*>& nxtNodes) {
	// if curNode equals srcNode, this is just the original srcPoint
	const float2& curPoint2 = curNode->GetNeighborEdgeTransitionPoint(0);
	const float3  curPoint  = {curPoint2.x, 0.0f, curPoint2.y};

	for (unsigned int i = 0; i < nxtNodes.size(); i++) {
		// NOTE:
		//   this uses the actual distance that edges of the final path will cover,
		//   from <curPoint> (initialized to sourcePoint) to a position on the edge
		//   shared between <curNode> and <nxtNode>
		//   (each individual path-segment is weighted by the average move-cost of
		//   the node it crosses, which is the reciprocal of the average speed-mod)
		// NOTE:
		//   short paths that should have 3 points (2 nodes) can contain 4 (3 nodes);
		//   this happens when a path takes a "detour" through a corner neighbor of
		//   srcNode if the shared corner vertex is closer to the goal position than
		//   any transition-point on the edge between srcNode and tgtNode
		// NOTE:
		//   H needs to be of the same order as G, otherwise the search reduces to
		//   Dijkstra (if G dominates H) or becomes inadmissable (if H dominates G)
		//   in the first case we would explore many more nodes than necessary (CPU
		//   nightmare), while in the second we would get low-quality paths (player
		//   nightmare)
		nxtNode = nxtNodes[i];

		if (nxtNode->AllSquaresImpassable())
			continue;

		const bool isCurrent = (nxtNode->GetSearchState() >= searchState);
		const bool isClosed = ((nxtNode->GetSearchState() & 1) == NODE_STATE_CLOSED);
		const bool isTarget = (nxtNode == tgtNode);

		unsigned int netPointIdx = 0;

		#if (QTPFS_MAX_NETPOINTS_PER_NODE_EDGE == 1)
		/*if (!IntersectEdge(curNode, nxtNode, tgtPoint - curPoint))*/ {
			// if only one transition-point is allowed per edge,
			// this will always be the edge's center --> no need
			// to be fancy (note that this is not always the best
			// option, it causes local and global sub-optimalities
			// which SmoothPath can only partially address)
			netPoints[0] = curNode->GetNeighborEdgeTransitionPoint(1 + i);

			// cannot use squared-distances because that will bias paths
			// towards smaller nodes (eg. 1^2 + 1^2 + 1^2 + 1^2 != 4^2)
			gDists[0] = curPoint.distance({netPoints[0].x, 0.0f, netPoints[0].y});
			hDists[0] = tgtPoint.distance({netPoints[0].x, 0.0f, netPoints[0].y});
			gCosts[0] =
				curNode->GetPathCost(NODE_PATH_COST_G) +
				curNode->GetMoveCost() * gDists[0] +
				nxtNode->GetMoveCost() * hDists[0] * int(isTarget);
			hCosts[0] = hDists[0] * hCostMult * int(!isTarget);
		}
		#else
		// examine a number of possible transition-points
		// along the edge between curNode and nxtNode and
		// pick the one that minimizes g+h
		// this fixes a few cases that path-smoothing can
		// not handle; more points means a greater degree
		// of non-cardinality (but gets expensive quickly)
		for (unsigned int j = 0; j < QTPFS_MAX_NETPOINTS_PER_NODE_EDGE; j++) {
			netPoints[j] = curNode->GetNeighborEdgeTransitionPoint(1 + i * QTPFS_MAX_NETPOINTS_PER_NODE_EDGE + j);

			gDists[j] = curPoint.distance({netPoints[j].x, 0.0f, netPoints[j].y});
			hDists[j] = tgtPoint.distance({netPoints[j].x, 0.0f, netPoints[j].y});
			gCosts[j] =
				curNode->GetPathCost(NODE_PATH_COST_G) +
				curNode->GetMoveCost() * gDists[j] +
				nxtNode->GetMoveCost() * hDists[j] * int(isTarget);
			hCosts[j] = hDists[j] * hCostMult * int(!isTarget);

			if ((gCosts[j] + hCosts[j]) < (gCosts[netPointIdx] + hCosts[netPointIdx])) {
				netPointIdx = j;
			}
		}
		#endif

		if (!isCurrent) {
			UpdateNode(nxtNode, curNode, netPointIdx);

			openNodes.push(nxtNode);
			openNodes.check_heap_property(0);

			#ifdef QTPFS_TRACE_PATH_SEARCHES
			searchIter.AddPushedNodeIdx(nxtNode->zmin() * mapDims.mapx + nxtNode->xmin());
			#endif

			continue;
		}
		if (gCosts[netPointIdx] >= nxtNode->GetPathCost(NODE_PATH_COST_G))
			continue;
		if (isClosed)
			openNodes.push(nxtNode);

		UpdateNode(nxtNode, curNode, netPointIdx);

		// restore ordering in case nxtNode was already open
		// (changing the f-cost of an OPEN node messes up the
		// queue's internal consistency; a pushed node remains
		// OPEN until it gets popped)
		openNodes.resort(nxtNode);
		openNodes.check_heap_property(0);
	}
}

void QTPFS::PathSearch::Finalize(IPath* path) {
	TracePath(path);

	#ifdef QTPFS_SMOOTH_PATHS
	SmoothPath(path);
	#endif

	path->SetBoundingBox();

	// path remains in live-cache until DeletePath is called
	pathCache->AddLivePath(path);
}

void QTPFS::PathSearch::TracePath(IPath* path) {
	std::deque<float3> points;
//	std::deque<float3>::const_iterator pointsIt;

	if (srcNode != tgtNode) {
		INode* tmpNode = tgtNode;
		INode* prvNode = tmpNode->GetPrevNode();

		float3 prvPoint = tgtPoint;

		while ((prvNode != nullptr) && (tmpNode != srcNode)) {
			const float2& tmpPoint2 = tmpNode->GetNeighborEdgeTransitionPoint(0);
			const float3  tmpPoint  = {tmpPoint2.x, 0.0f, tmpPoint2.y};

			assert(!math::isinf(tmpPoint.x) && !math::isinf(tmpPoint.z));
			assert(!math::isnan(tmpPoint.x) && !math::isnan(tmpPoint.z));
			// NOTE:
			//   waypoints should NEVER have identical coordinates
			//   one exception: tgtPoint can legitimately coincide
			//   with first transition-point, which we must ignore
			assert(tmpNode != prvNode);
			assert(tmpPoint != prvPoint || tmpNode == tgtNode);

			if (tmpPoint != prvPoint)
				points.push_front(tmpPoint);

			#ifndef QTPFS_SMOOTH_PATHS
			// make sure the back-pointers can never become dangling
			// (if smoothing IS enabled, we delay this until we reach
			// SmoothPath() because we still need them there)
			tmpNode->SetPrevNode(nullptr);
			#endif

			prvPoint = tmpPoint;
			tmpNode = prvNode;
			prvNode = tmpNode->GetPrevNode();
		}
	}

	// if source equals target, we need only two points
	if (!points.empty()) {
		path->AllocPoints(points.size() + 2);
	} else {
		assert(path->NumPoints() == 2);
	}

	// set waypoints with indices [1, N - 2] (if any)
	while (!points.empty()) {
		path->SetPoint((path->NumPoints() - points.size()) - 1, points.front());
		points.pop_front();
	}

	// set the first (0) and last (N - 1) waypoint
	path->SetSourcePoint(srcPoint);
	path->SetTargetPoint(tgtPoint);
}

void QTPFS::PathSearch::SmoothPath(IPath* path) const {
	if (path->NumPoints() == 2)
		return;

	assert(srcNode->GetPrevNode() == NULL);

	for (unsigned int k = 0; k < QTPFS_MAX_SMOOTHING_ITERATIONS; k++) {
		if (!SmoothPathIter(path)) {
			// all waypoints stopped moving
			break;
		}
	}

	INode* n0 = tgtNode;
	INode* n1 = tgtNode;

	while (n1 != srcNode) {
		n0 = n1;
		n1 = n0->GetPrevNode();

		// reset back-pointers
		n0->SetPrevNode(NULL);
	}
}

bool QTPFS::PathSearch::SmoothPathIter(IPath* path) const {
	// smooth in reverse order (target to source)
	//
	// should terminate when waypoints stop moving,
	// or after a small fixed number of iterations
	unsigned int ni = path->NumPoints();
	unsigned int nm = 0;

	INode* n0 = tgtNode;
	INode* n1 = tgtNode;

	while (n1 != srcNode) {
		n0 = n1;
		n1 = n0->GetPrevNode();
		ni -= 1;

		assert(n1->GetNeighborRelation(n0) != 0);
		assert(n0->GetNeighborRelation(n1) != 0);
		assert(ni < path->NumPoints());

		const unsigned int ngbRel = n0->GetNeighborRelation(n1);

		const float3 p0 = path->GetPoint(ni    );
		const float3 p1 = path->GetPoint(ni - 1);
		const float3 p2 = path->GetPoint(ni - 2);

		float3 pi = ZeroVector;

		// check if we can reduce the angle between segments
		// p0-p1 and p1-p2 (ideally to zero degrees, making
		// p0-p2 a straight line) without causing either of
		// the segments to cross into other nodes
		//
		// p1 always lies on the node to the right and/or to
		// the bottom of the shared edge between p0 and p2,
		// and we move it along the edge-dimension (x or z)
		// between [xmin, xmax] or [zmin, zmax]
		const float3 p1p0 = (p1 - p0).SafeNormalize();
		const float3 p2p1 = (p2 - p1).SafeNormalize();
		const float3 p2p0 = (p2 - p0).SafeNormalize();
		const float   dot = p1p0.dot(p2p1);

		// if segments are already nearly parallel, skip
		if (dot >= 0.995f)
			continue;

		// figure out if p1 is on a horizontal or a vertical edge
		// (if both of these are true, it is in fact in a corner)
		const bool hEdge = (((ngbRel & REL_NGB_EDGE_T) != 0) || ((ngbRel & REL_NGB_EDGE_B) != 0));
		const bool vEdge = (((ngbRel & REL_NGB_EDGE_L) != 0) || ((ngbRel & REL_NGB_EDGE_R) != 0));

		assert(hEdge || vEdge);

		// establish the x- and z-range within which p1 can be moved
		const unsigned int xmin = std::max(n1->xmin(), n0->xmin());
		const unsigned int zmin = std::max(n1->zmin(), n0->zmin());
		const unsigned int xmax = std::min(n1->xmax(), n0->xmax());
		const unsigned int zmax = std::min(n1->zmax(), n0->zmax());

		{
			// calculate intersection point between ray (p2 - p0) and edge
			// if pi lies between bounds, use that and move to next triplet
			//
			// cases:
			//     A) p0-p1-p2 (p2p0.xz >= 0 -- p0 in n0, p2 in n1)
			//     B) p2-p1-p0 (p2p0.xz <= 0 -- p2 in n1, p0 in n0)
			//
			// x- and z-distances to edge between n0 and n1
			const float dfx = (p2p0.x > 0.0f)?
				((n0->xmax() * SQUARE_SIZE) - p0.x): // A(x)
				((n0->xmin() * SQUARE_SIZE) - p0.x); // B(x)
			const float dfz = (p2p0.z > 0.0f)?
				((n0->zmax() * SQUARE_SIZE) - p0.z): // A(z)
				((n0->zmin() * SQUARE_SIZE) - p0.z); // B(z)

			const float dx = (math::fabs(p2p0.x) > 0.001f)? p2p0.x: 0.001f;
			const float dz = (math::fabs(p2p0.z) > 0.001f)? p2p0.z: 0.001f;
			const float tx = dfx / dx;
			const float tz = dfz / dz;

			bool ok = true;

			if (hEdge) {
				pi.x = p0.x + p2p0.x * tz;
				pi.z = p1.z;
			}
			if (vEdge) {
				pi.x = p1.x;
				pi.z = p0.z + p2p0.z * tx;
			}

			ok = ok && (pi.x >= (xmin * SQUARE_SIZE) && pi.x <= (xmax * SQUARE_SIZE));
			ok = ok && (pi.z >= (zmin * SQUARE_SIZE) && pi.z <= (zmax * SQUARE_SIZE));

			if (ok) {
				nm += ((pi - p1).SqLength2D() > Square(0.05f));

				assert(!math::isinf(pi.x) && !math::isinf(pi.z));
				assert(!math::isnan(pi.x) && !math::isnan(pi.z));
				path->SetPoint(ni - 1, pi);
				continue;
			}
		}

		if (hEdge != vEdge) {
			// get the edge end-points
			float3 e0 = p1;
			float3 e1 = p1;

			if (hEdge) {
				e0.x = xmin * SQUARE_SIZE;
				e1.x = xmax * SQUARE_SIZE;
			}
			if (vEdge) {
				e0.z = zmin * SQUARE_SIZE;
				e1.z = zmax * SQUARE_SIZE;
			}

			// figure out what the angle between p0-p1 and p1-p2
			// would be after substituting the edge-ends for p1
			// (we want dot-products as close to 1 as possible)
			//
			// p0-e0-p2
			const float3 e0p0 = (e0 - p0).SafeNormalize();
			const float3 p2e0 = (p2 - e0).SafeNormalize();
			const float  dot0 = e0p0.dot(p2e0);
			// p0-e1-p2
			const float3 e1p0 = (e1 - p0).SafeNormalize();
			const float3 p2e1 = (p2 - e1).SafeNormalize();
			const float  dot1 = e1p0.dot(p2e1);

			// if neither end-point is an improvement, skip
			if (dot > std::max(dot0, dot1))
				continue;

			if (dot0 > std::max(dot1, dot)) { pi = e0; }
			if (dot1 > std::max(dot0, dot)) { pi = e1; }

			nm += ((pi - p1).SqLength2D() > Square(0.05f));

			assert(!math::isinf(pi.x) && !math::isinf(pi.z));
			assert(!math::isnan(pi.x) && !math::isnan(pi.z));
			path->SetPoint(ni - 1, pi);
		}
	}

	return (nm != 0);
}



bool QTPFS::PathSearch::SharedFinalize(const IPath* srcPath, IPath* dstPath) {
	assert(dstPath->GetID() != 0);
	assert(dstPath->GetID() != srcPath->GetID());
	assert(dstPath->NumPoints() == 2);

	const float3& p0 = srcPath->GetTargetPoint();
	const float3& p1 = dstPath->GetTargetPoint();

	if (p0.SqDistance(p1) < (SQUARE_SIZE * SQUARE_SIZE)) {
		// copy <srcPath> to <dstPath>
		dstPath->CopyPoints(*srcPath);
		dstPath->SetSourcePoint(srcPoint);
		dstPath->SetTargetPoint(tgtPoint);
		dstPath->SetBoundingBox();

		pathCache->AddLivePath(dstPath);
		return true;
	}

	return false;
}

const std::uint64_t QTPFS::PathSearch::GetHash(std::uint64_t N, std::uint32_t k) const {
	return (srcNode->GetNodeNumber() + (tgtNode->GetNodeNumber() * N) + (k * N * N));
}