1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include <cassert>
#include <cstring>
#include <cstdio>
#include "SHA512.hpp"
static uint8_t hex2dec(uint8_t c) {
if (c >= '0' && c <= '9') return ( (c - '0'));
if (c >= 'a' && c <= 'f') return (10 + (c - 'a'));
if (c >= 'A' && c <= 'F') return (10 + (c - 'A'));
return 0;
}
static uint64_t rotr64(uint64_t x, uint64_t i) {
assert(i >= 1);
assert(i <= 63);
return ((x << (64 - i)) | (x >> i));
}
void sha512::read_digest(const hex_digest& hex_chars, raw_digest& sha_bytes) {
for (uint8_t i = 0; i < SHA_LEN; i++) {
const uint8_t c0 = hex2dec(hex_chars[i * 2 + 0]);
const uint8_t c1 = hex2dec(hex_chars[i * 2 + 1]);
sha_bytes[i] = (c0 << 4) | c1;
}
}
void sha512::dump_digest(const raw_digest& sha_bytes, hex_digest& hex_chars) {
for (uint8_t i = 0; i < SHA_LEN; i++) {
snprintf(hex_chars.data() + (i * 2), hex_chars.size() - (i * 2), "%02x", sha_bytes[i]);
}
hex_chars[hex_chars.size() - 1] = 0;
}
void sha512::calc_digest(const msg_vector& msg_bytes, raw_digest& sha_bytes) {
calc_digest(msg_bytes.data(), msg_bytes.size(), sha_bytes.data());
}
void sha512::calc_digest(const uint8_t msg_bytes[], size_t len, uint8_t sha_bytes[SHA_LEN]) {
uint8_t block[BLK_LEN] = {0};
uint64_t state[NUM_STATE_CONSTS] = {0};
size_t ofs = len & (~static_cast<size_t>(BLK_LEN - 1));
static_assert(sizeof(STATE_CONSTS) == (NUM_STATE_CONSTS * sizeof(uint64_t)), "");
std::memcpy(&state[0], &STATE_CONSTS[0], sizeof(STATE_CONSTS));
dm_compress(state, msg_bytes, ofs);
// handle final blocks
if ((len - ofs) > 0)
std::memmove(block, &msg_bytes[ofs], len - ofs);
ofs = len & (BLK_LEN - 1);
ofs += 1;
block[ofs - 1] = 0x80;
// apply padding
if ((ofs + 16) > BLK_LEN) {
dm_compress(state, block, BLK_LEN);
std::memset(block, 0, BLK_LEN);
}
block[BLK_LEN - 1] = static_cast<uint8_t>((len & 0x1Fu) << 3);
len >>= 5;
// write lengths
for (uint8_t i = 1; i < 16; i++, len >>= 8) {
block[BLK_LEN - 1 - i] = static_cast<uint8_t>(len);
}
dm_compress(state, block, BLK_LEN);
// convert state to digest bytes; big-endian order
for (uint8_t i = 0; i < SHA_LEN; i++) {
sha_bytes[i] = static_cast<uint8_t>(state[i >> 3] >> ((7 - (i & 7)) << 3));
}
}
void sha512::dm_compress(uint64_t state[NUM_STATE_CONSTS], const uint8_t blocks[], size_t len) {
assert(len == 0 || (len % BLK_LEN) == 0);
uint64_t schedule[NUM_ROUND_CONSTS] = {0};
for (size_t i = 0; i < len; ) {
// initialize schedule
for (uint8_t j = 0; j < 16; j++, i += 8) {
schedule[j] = 0;
schedule[j] |= (static_cast<uint64_t>(blocks[i + 0]) << 56);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 1]) << 48);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 2]) << 40);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 3]) << 32);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 4]) << 24);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 5]) << 16);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 6]) << 8);
schedule[j] |= (static_cast<uint64_t>(blocks[i + 7]) << 0);
}
for (uint8_t j = 16; j < NUM_ROUND_CONSTS; j++) {
schedule[j] = schedule[j - 16] + schedule[j - 7];
schedule[j] += (rotr64(schedule[j - 15], 1) ^ rotr64(schedule[j - 15], 8) ^ (schedule[j - 15] >> 7));
schedule[j] += (rotr64(schedule[j - 2], 19) ^ rotr64(schedule[j - 2], 61) ^ (schedule[j - 2] >> 6));
}
// round constants
uint64_t a = state[0];
uint64_t b = state[1];
uint64_t c = state[2];
uint64_t d = state[3];
uint64_t e = state[4];
uint64_t f = state[5];
uint64_t g = state[6];
uint64_t h = state[7];
for (uint8_t j = 0; j < NUM_ROUND_CONSTS; j++) {
const uint64_t t1 = h + (rotr64(e, 14) ^ rotr64(e, 18) ^ rotr64(e, 41)) + (g ^ (e & (f ^ g))) + ROUND_CONSTS[j] + schedule[j];
const uint64_t t2 = (rotr64(a, 28) ^ rotr64(a, 34) ^ rotr64(a, 39)) + ((a & (b | c)) | (b & c));
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
}
}
bool sha512::unit_test(const char* msg_str, const char* sha_str) {
msg_vector msg_bytes = {};
raw_digest sha_bytes = {0};
if (msg_str[0] != 0) {
msg_bytes.resize(std::strlen(msg_str), 0);
std::memcpy(msg_bytes.data(), msg_str, msg_bytes.size());
}
calc_digest(msg_bytes, sha_bytes);
size_t k = 0;
for (size_t n = 0; n < SHA_LEN; n++) {
const uint8_t a = hex2dec(sha_str[n * 2 + 0]);
const uint8_t b = hex2dec(sha_str[n * 2 + 1]);
k += (sha_bytes[n] == ((a << 4) | b));
}
return (k == SHA_LEN);
}
|