1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#ifndef _THREADPOOL_H
#define _THREADPOOL_H
#ifndef THREADPOOL
#include <functional>
#include "System/Threading/SpringThreading.h"
namespace ThreadPool {
template<class F, class... Args>
static inline void Enqueue(F&& f, Args&&... args)
{
f(args ...);
}
static inline void AddExtJob(spring::thread&& t) { t.join(); }
static inline void AddExtJob(std::future<void>&& f) { f.get(); }
static inline void ClearExtJobs() {}
static inline void SetMaximumThreadCount() {}
static inline void SetDefaultThreadCount() {}
static inline void SetThreadCount(int num) {}
static inline int GetThreadNum() { return 0; }
static inline int GetMaxThreads() { return 1; }
static inline int GetNumThreads() { return 1; }
static inline void NotifyWorkerThreads(bool force, bool async) {}
static inline bool HasThreads() { return false; }
static constexpr int MAX_THREADS = 1;
}
static inline void for_mt(int start, int end, int step, const std::function<void(const int i)>&& f)
{
for (int i = start; i < end; i += step) {
f(i);
}
}
static inline void for_mt(int start, int end, const std::function<void(const int i)>&& f)
{
for_mt(start, end, 1, std::move(f));
}
static inline void for_mt2(int start, int end, unsigned worksize, const std::function<void(const int i)>&& f)
{
for_mt(start, end, 1, std::move(f));
}
static inline void parallel(const std::function<void()>&& f)
{
f();
}
template<class F, class G>
static inline auto parallel_reduce(F&& f, G&& g) -> typename std::result_of<F()>::type
{
return f();
}
#else
#include "System/TimeProfiler.h"
#include "System/Platform/Threading.h"
#include "System/Threading/SpringThreading.h"
#include <array>
#include <vector>
#include <numeric>
#include <atomic>
#undef gt
#include <memory>
#ifdef UNITSYNC
#undef SCOPED_MT_TIMER
#define SCOPED_MT_TIMER(x)
#endif
class ITaskGroup;
namespace ThreadPool {
template<class F, class... Args>
static auto Enqueue(F&& f, Args&&... args)
-> std::shared_ptr<std::future<typename std::result_of<F(Args...)>::type>>;
void AddExtJob(spring::thread&& t);
void AddExtJob(std::future<void>&& f);
void ClearExtJobs();
void PushTaskGroup(ITaskGroup* taskGroup);
void PushTaskGroup(std::shared_ptr<ITaskGroup>&& taskGroup);
void WaitForFinished(std::shared_ptr<ITaskGroup>&& taskGroup);
template<typename T>
inline void PushTaskGroup(std::shared_ptr<T>& taskGroup) { PushTaskGroup(std::move(std::static_pointer_cast<ITaskGroup>(taskGroup))); } //FIXME std::move? doesn't it delete the original arg?
template<typename T>
inline void WaitForFinished(std::shared_ptr<T>& taskGroup) { WaitForFinished(std::move(std::static_pointer_cast<ITaskGroup>(taskGroup))); }
void SetMaximumThreadCount();
void SetDefaultThreadCount();
void SetThreadCount(int num);
int GetThreadNum();
bool HasThreads();
int GetMaxThreads();
int GetNumThreads();
void NotifyWorkerThreads(bool force, bool async);
static constexpr int MAX_THREADS = 16;
}
class ITaskGroup
{
public:
ITaskGroup(const bool getid = true, const bool pooled = false): id(getid ? lastId.fetch_add(1) : -1u), ts(0) {
ResetState(!pooled, pooled, false);
}
virtual ~ITaskGroup() {
assert(AllowDelete());
}
virtual bool IsAsyncTask() const { return false; }
virtual bool IsSliceTask() const { return false; }
virtual bool ExecuteStep() = 0;
virtual bool SelfDelete() const { return false; }
uint64_t ExecuteLoop(int tid, bool wffCall) {
const spring_time t0 = spring_now();
while (ExecuteStep());
const spring_time t1 = spring_now();
const spring_time dt = t1 - t0;
if (IsSliceTask()) {
// inTaskQueue would be set to false prematurely by the
// first slice to finish, let it be handled by WFF which
// blocks until all threads are
if (!wffCall)
return (dt.toNanoSecsi());
inTaskQueue.store(false);
} else {
// do not set this to false from WFF, defeats the purpose
if (!wffCall) {
assert(inTaskQueue.load());
inTaskQueue.store(wffCall);
}
}
if (SelfDelete()) {
// store *after* the check in both branches, avoids UAF
// async-tasks can never have a parent waiting for them
execLoopDone.store(true);
delete this;
} else {
execLoopDone.store(ExecLoopDone() || !wffCall);
}
return (dt.toNanoSecsi());
}
bool IsFinished() const { assert(remainingTasks.load() >= 0); return (remainingTasks.load(std::memory_order_relaxed) == 0); }
bool IsInJobQueue() const { return (inTaskQueue.load(std::memory_order_relaxed)); }
bool IsInTaskPool() const { return ((taskPoolMask.load(std::memory_order_relaxed) & (1 << 0)) != 0); }
bool IsInPoolUse() const { return ((taskPoolMask.load(std::memory_order_relaxed) & (1 << 1)) != 0); }
bool ExecLoopDone() const { return (execLoopDone.load(std::memory_order_relaxed)); }
// pooled tasks are deleted only when their pool dies (on exit) which is always allowed
bool AllowDelete() const { return (IsFinished() && ((!IsInJobQueue() && ExecLoopDone()) || IsInTaskPool())); }
int RemainingTasks() const { return remainingTasks; }
int WantedThread() const { return wantedThread; }
bool WaitFor(const spring_time& rel_time) const {
const auto end = spring_now() + rel_time;
while (!IsFinished() && (spring_now() < end));
return IsFinished();
}
uint32_t GetId() const { return id; }
uint64_t GetDeltaTime(const spring_time t) const { return (std::max(ts.load(), uint64_t(t.toNanoSecsi())) - ts); }
void UpdateId() { id = lastId.fetch_add(1); }
void SetTimeStamp(const spring_time t) { ts = t.toNanoSecsi(); }
void ResetState(bool queued, bool pooled, bool inuse) {
remainingTasks.store(0);
wantedThread.store(0);
taskPoolMask.store(((1 * pooled) << 0) + ((1 * inuse) << 1));
inTaskQueue.store(queued);
execLoopDone.store(false);
}
public:
std::atomic_int remainingTasks;
std::atomic_int wantedThread; // if 0 (default), task will be executed by an arbitrary thread
std::atomic_int taskPoolMask; // whether this task is managed (owned) and in use by a TaskPool
std::atomic_bool inTaskQueue; // whether this task is still in a thread's queue
std::atomic_bool execLoopDone; // whether the thread running this task is about to exit ExecLoop
private:
static std::atomic_uint lastId;
std::atomic<uint32_t> id;
std::atomic<uint64_t> ts; // timestamp (ns)
};
template<class F, class... Args>
class AsyncTask: public ITaskGroup
{
public:
typedef typename std::result_of<F(Args...)>::type return_type;
AsyncTask(F f, Args... args) : selfDelete(true) {
task = std::make_shared<std::packaged_task<return_type()>>(std::bind(f, std::forward<Args>(args)...));
result = std::make_shared<std::future<return_type>>(task->get_future());
remainingTasks += 1;
}
bool IsAsyncTask() const override { return true; }
bool SelfDelete() const override { return (selfDelete.load()); }
bool ExecuteStep() override {
// note: *never* called from WaitForFinished
(*task)();
remainingTasks -= 1;
return false;
}
// FIXME: rethrow exceptions some time
std::shared_ptr<std::future<return_type>> GetFuture() { assert(result->valid()); return std::move(result); }
public:
// if true, we are not managed by a shared_ptr
std::atomic<bool> selfDelete;
std::shared_ptr<std::packaged_task<return_type()>> task;
std::shared_ptr<std::future<return_type>> result;
};
template<class F, typename R = int, class... Args>
class TTaskGroup: public ITaskGroup
{
public:
TTaskGroup(const int num = 0) : curtask(0) {
results.reserve(num);
tasks.reserve(num);
}
typedef R return_type;
void Enqueue(F f, Args... args)
{
auto task = std::make_shared<std::packaged_task<return_type()>>(std::bind(f, std::forward<Args>(args)...));
results.emplace_back(task->get_future());
tasks.emplace_back(task);
remainingTasks.fetch_add(1, std::memory_order_release);
}
bool ExecuteStep() override
{
const int pos = curtask.fetch_add(1, std::memory_order_relaxed);
if (pos < tasks.size()) {
tasks[pos]();
remainingTasks.fetch_sub(1, std::memory_order_release);
return true;
}
return false;
}
template<typename G>
return_type GetResult(const G&& g) {
return std::accumulate(results.begin(), results.end(), 0, g);
}
public:
std::atomic<int> curtask;
std::vector<std::function<void()>> tasks;
std::vector<std::future<return_type>> results;
};
template<class F, typename ...Args>
class TTaskGroup<F, void, Args...>: public ITaskGroup
{
public:
TTaskGroup(const int num = 0) : curtask(0) {
tasks.reserve(num);
}
void Enqueue(F f, Args... args)
{
tasks.emplace_back(std::bind(f, args...));
remainingTasks.fetch_add(1, std::memory_order_release);
}
bool ExecuteStep() override
{
const int pos = curtask.fetch_add(1, std::memory_order_relaxed);
if (pos < tasks.size()) {
tasks[pos]();
remainingTasks.fetch_sub(1, std::memory_order_release);
return true;
}
return false;
}
public:
std::atomic<int> curtask;
std::vector<std::function<void()>> tasks;
};
template<class F>
class TTaskGroup<F, void>: public ITaskGroup
{
public:
TTaskGroup(const int num = 0) : curtask(0) {
tasks.reserve(num);
}
void Enqueue(F f)
{
tasks.emplace_back(f);
remainingTasks.fetch_add(1, std::memory_order_release);
}
bool ExecuteStep() override
{
const int pos = curtask.fetch_add(1, std::memory_order_relaxed);
if (pos < tasks.size()) {
tasks[pos]();
remainingTasks.fetch_sub(1, std::memory_order_release);
return true;
}
return false;
}
public:
std::atomic<int> curtask;
std::vector<std::function<void()>> tasks;
};
template<typename F, typename ...Args>
class TaskGroup: public TTaskGroup<F, decltype(std::declval<F>()((std::declval<Args>())...)), Args...> {
public:
typedef decltype(std::declval<F>()((std::declval<Args>())...)) R;
TaskGroup(const int num = 0) : TTaskGroup<F, R, Args...>(num) {}
};
#if 0
template<typename F, typename return_type = int, typename... Args>
class TParallelTaskGroup: public TTaskGroup<F, return_type, Args...>
{
public:
TParallelTaskGroup(const int num = 0) : TTaskGroup<F, return_type, Args...>(num) {
uniqueTasks.fill(nullptr);
}
void EnqueueUnique(const int threadNum, F& f, Args... args)
{
auto task = std::make_shared< std::packaged_task<return_type()> >(std::bind(std::forward<F>(f), std::forward<Args>(args)...));
this->results.emplace_back(task->get_future());
this->remainingTasks += 1;
// NOTE:
// here we want task <task> to be executed by thread <threadNum>
// this does not actually happen, thread i can call ExecuteStep
// multiple times while thread j never calls it (because any TG
// is pulled from the queue *once*, by a random thread) meaning
// we will have leftover unexecuted tasks and hang
uniqueTasks[threadNum] = [=](){ (*task)(); };
}
bool ExecuteStep() override
{
auto& func = uniqueTasks[ThreadPool::GetThreadNum()];
// does nothing when num=0 except return false (no change to remainingTasks)
if (func == nullptr)
return TTaskGroup<F, return_type, Args...>::ExecuteStep();
// no need to make threadsafe; each thread has its own container
func();
func = nullptr;
if (!this->IsFinished()) {
this->remainingTasks -= 1;
return true;
}
return false;
}
public:
std::array<std::function<void()>, ThreadPool::MAX_THREADS> uniqueTasks;
};
#endif
#if 0
template<typename F, typename ...Args>
class ParallelTaskGroup: public TParallelTaskGroup<F, decltype(std::declval<F>()((std::declval<Args>())...)), Args...> {
public:
typedef decltype(std::declval<F>()((std::declval<Args>())...)) R;
ParallelTaskGroup(const int num = 0) : TParallelTaskGroup<F, R, Args...>(num) {}
};
#endif
#if 0
template<typename F>
class Parallel2TaskGroup: public ITaskGroup
{
public:
Parallel2TaskGroup(bool pooled) : ITaskGroup(false, pooled) {
// uniqueTasks.fill(false);
}
void Enqueue(F& func)
{
f = func;
remainingTasks = ThreadPool::GetNumThreads();
uniqueTasks.fill(false);
}
// NOTE:
// as written, this can only work *by accident* if 1) the thread
// that executes it in DoTask has a different id than the one in
// WaitForFinished and 2) the pool contains at most two threads
// (three or more will inevitably cause a hang, same conditions
// as TParallelTaskGroup)
bool ExecuteStep() override
{
auto& ut = uniqueTasks[ThreadPool::GetThreadNum()];
if (!ut) {
// no need to make threadsafe; each thread has its own container
ut = true;
f();
remainingTasks -= 1;
return (!IsFinished());
}
return false;
}
public:
std::array<bool, ThreadPool::MAX_THREADS> uniqueTasks;
std::function<void()> f;
};
#else
template<typename F>
class Parallel2TaskGroup: public ITaskGroup
{
public:
typedef TTaskGroup<F, void> ChildTaskType;
Parallel2TaskGroup(bool pooled) : ITaskGroup(false, pooled) {}
void Enqueue(F& func)
{
// note: GNT counts main so we would be short one worker
// (final task would never be executed and hang the pool)
remainingTasks.store(ThreadPool::GetNumThreads() - 1);
childTasks.clear();
childTasks.reserve(remainingTasks);
for (int i = 0; i < remainingTasks; i++) {
auto task = std::make_shared<ChildTaskType>(1);
task->Enqueue(func);
task->wantedThread.store(1 + i % (ThreadPool::GetNumThreads() - 1));
childTasks.push_back(task);
ThreadPool::PushTaskGroup(task);
}
}
bool ExecuteStep() override
{
bool isFinished = true;
for (size_t n = 0; n < childTasks.size(); n++) {
isFinished &= childTasks[n]->AllowDelete();
}
if (!isFinished)
return true;
// P2TG's are never actually in the queue, let WFF terminate
inTaskQueue.store(false);
remainingTasks.store(0);
childTasks.clear();
return false;
}
private:
std::vector< std::shared_ptr<ITaskGroup> > childTasks;
};
#endif
#if 0
template<typename F>
class ForTaskGroup: public ITaskGroup
{
public:
typedef TTaskGroup<F, void, int> ChildTaskType;
ForTaskGroup(bool pooled) : ITaskGroup(false, pooled) {}
void Enqueue(const int from, const int to, const int step, F& func)
{
assert(to >= from);
remainingTasks.store((step == 1) ? (to - from) : ((to - from + step - 1) / step));
childTasks.clear();
childTasks.reserve(remainingTasks);
for (int i = 0; i < remainingTasks; i++) {
auto task = std::make_shared<ChildTaskType>(1);
task->Enqueue(func, from + (step * i));
task->wantedThread.store(1 + i % (ThreadPool::GetNumThreads() - 1));
childTasks.push_back(task);
ThreadPool::PushTaskGroup(task);
}
}
bool ExecuteStep() override
{
bool isFinished = true;
for (size_t n = 0; n < childTasks.size(); n++) {
isFinished &= (childTasks[n]->IsFinished() && !childTasks[n]->IsInJobQueue());
}
if (!isFinished)
return true;
remainingTasks.store(0);
childTasks.clear();
return false;
}
private:
std::vector< std::shared_ptr<ITaskGroup> > childTasks;
};
#else
template<typename F>
class ForTaskGroup: public ITaskGroup
{
public:
typedef TTaskGroup<F, void, int> ChildTaskType;
ForTaskGroup(bool pooled) : ITaskGroup(false, pooled) {}
void Enqueue(const int from, const int to, const int step, F& func)
{
assert(to >= from);
remainingTasks.store((step == 1) ? (to - from) : ((to - from + step - 1) / step));
ctr.store(0);
this->from = from;
this->to = to;
this->step = step;
this->func = func;
}
bool IsSliceTask() const override { return true; }
bool ExecuteStep() override
{
const int i = from + (step * ctr.fetch_add(1, std::memory_order_relaxed));
if (i < to) {
func(i);
remainingTasks -= 1;
return true;
}
return false;
}
private:
std::atomic<int> ctr;
std::function<void(const int)> func;
int from;
int to;
int step;
};
#endif
template <template<typename> class TG, typename F>
struct TaskPool {
typedef TG<F> FuncTaskGroup;
typedef std::shared_ptr<FuncTaskGroup> FuncTaskGroupPtr;
// more than 256 nested for_mt's or parallel's should be uncommon
std::array<FuncTaskGroupPtr, 256> tgPool;
std::atomic_int pos = {0};
TaskPool() {
for (size_t i = 0; i < tgPool.size(); ++i) {
tgPool[i] = FuncTaskGroupPtr(new FuncTaskGroup(true));
}
}
FuncTaskGroupPtr GetTaskGroup() {
auto tg = tgPool[pos.fetch_add(1) % tgPool.size()];
assert(tg->IsFinished());
assert(tg->IsInTaskPool());
assert(!tg->IsInJobQueue());
assert(!tg->IsInPoolUse());
tg->ResetState(true, true, true);
return tg;
}
};
template <typename F>
static inline void for_mt(int start, int end, int step, F&& f)
{
if (!ThreadPool::HasThreads() || ((end - start) < step)) {
for (int i = start; i < end; i += step) {
f(i);
}
return;
}
SCOPED_MT_TIMER("ThreadPool::AddTask");
// static, so TaskGroup's are recycled
static TaskPool<ForTaskGroup, F> pool;
auto taskGroup = pool.GetTaskGroup();
taskGroup->Enqueue(start, end, step, f);
taskGroup->UpdateId();
assert(taskGroup->IsInJobQueue());
#if 0
ThreadPool::PushTaskGroup(taskGroup);
#else
// store the group in all worker queues s.t. each executes a slice
for (size_t i = 1; i < ThreadPool::GetNumThreads(); ++i) {
taskGroup->wantedThread.store(i);
ThreadPool::PushTaskGroup(taskGroup);
}
#endif
// make calling thread also run ExecuteLoop
ThreadPool::WaitForFinished(taskGroup);
}
template <typename F>
static inline void for_mt(int start, int end, F&& f)
{
for_mt(start, end, 1, f);
}
template <typename F>
static inline void parallel(F&& f)
{
if (!ThreadPool::HasThreads())
return f();
SCOPED_MT_TIMER("ThreadPool::AddTask");
// static, so TaskGroup's are recycled
static TaskPool<Parallel2TaskGroup, F> pool;
auto taskGroup = pool.GetTaskGroup();
taskGroup->Enqueue(f);
taskGroup->UpdateId();
assert(taskGroup->IsInJobQueue());
// note: child-tasks are pushed, parent itself should not be
// ThreadPool::PushTaskGroup(taskGroup);
ThreadPool::WaitForFinished(taskGroup);
}
template<class F, class G>
static inline auto parallel_reduce(F&& f, G&& g) -> typename std::result_of<F()>::type
{
if (!ThreadPool::HasThreads())
return f();
SCOPED_MT_TIMER("ThreadPool::AddTask");
typedef typename std::result_of<F()>::type RetType;
// typedef typename std::shared_ptr< AsyncTask<F> > TaskType;
typedef std::shared_ptr< std::future<RetType> > FoldType;
// std::array<TaskType, ThreadPool::MAX_THREADS> tasks;
std::array<AsyncTask<F>*, ThreadPool::MAX_THREADS> tasks;
std::array<FoldType, ThreadPool::MAX_THREADS> results;
// NOTE:
// results become available in AsyncTask::ExecuteStep, and can allow
// accumulate to return (followed by tasks going out of scope) before
// ExecuteStep's themselves have returned --> premature task deletion
// if shared_ptr were used (all tasks *must* have exited ExecuteLoop)
//
// tasks[0] = std::move(std::make_shared<AsyncTask<F>>(std::forward<F>(f)));
tasks[0] = new AsyncTask<F>(std::forward<F>(f));
results[0] = std::move(tasks[0]->GetFuture());
// first job in a reduction usually wants to run on the main thread
tasks[0]->ExecuteLoop(0, false);
// need to push N individual tasks; see NOTE in TParallelTaskGroup
for (size_t i = 1, n = ThreadPool::GetNumThreads(); i < n; ++i) {
// tasks[i] = std::move(std::make_shared<AsyncTask<F>>(std::forward<F>(f)));
tasks[i] = new AsyncTask<F>(std::forward<F>(f));
results[i] = std::move(tasks[i]->GetFuture());
// tasks[i]->selfDelete.store(false);
tasks[i]->wantedThread.store(i);
ThreadPool::PushTaskGroup(tasks[i]);
}
return (std::accumulate(results.begin(), results.begin() + ThreadPool::GetNumThreads(), 0, g));
}
namespace ThreadPool {
template<class F, class... Args>
static inline auto Enqueue(F&& f, Args&&... args)
-> std::shared_ptr<std::future<typename std::result_of<F(Args...)>::type>>
{
typedef typename std::result_of<F(Args...)>::type return_type;
if (!ThreadPool::HasThreads()) {
// directly process when there are no worker threads
auto task = std::make_shared< std::packaged_task<return_type()> >(std::bind(f, args ...));
auto fut = std::make_shared<std::future<return_type>>(task->get_future());
(*task)();
return fut;
}
// can not use shared_ptr here, make async tasks delete themselves instead
// auto task = std::make_shared<AsyncTask<F, Args...>>(std::forward<F>(f), std::forward<Args>(args)...);
auto task = new AsyncTask<F, Args...>(std::forward<F>(f), std::forward<Args>(args)...);
auto fut = task->GetFuture();
// minor hack: assume AsyncTask's will cause (heavy) disk IO
// although these can never block the main thread, the async
// workers might still be handed an uneven work distribution
task->wantedThread.store(1 + task->GetId() % (ThreadPool::GetNumThreads() - 1));
ThreadPool::PushTaskGroup(task);
return fut;
}
}
#endif
#endif
|