File: Ground.cpp

package info (click to toggle)
spring 88.0%2Bdfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 41,524 kB
  • sloc: cpp: 343,114; ansic: 38,414; python: 12,257; java: 12,203; awk: 5,748; sh: 1,204; xml: 997; perl: 405; objc: 192; makefile: 181; php: 134; sed: 2
file content (513 lines) | stat: -rwxr-xr-x 14,625 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */

#include "System/mmgr.h"

#include "Ground.h"
#include "ReadMap.h"
#include "Game/Camera.h"
#include "Sim/Misc/GeometricObjects.h"
#include "Sim/Projectiles/Projectile.h"
#include "System/myMath.h"

#include <cassert>
#include <limits>

#undef far // avoid collision with windef.h
#undef near

static inline float InterpolateHeight(float x, float y, const float* heightmap)
{
	// NOTE:
	// This isn't a bilinear interpolation. Instead it interpolates
	// on the 2 triangles that form the ground quad:
	//
	// TL __________ TR
	//    |        /|
	//    | dx+dy / |
	//    | \<1  /  |
	//    |     /   |
	//    |    /    |
	//    |   /     |
	//    |  / dx+dy|
	//    | /  \>=1 |
	//    |/        |
	// BL ---------- BR

	x = Clamp(x, 0.f, float3::maxxpos) / SQUARE_SIZE;
	y = Clamp(y, 0.f, float3::maxzpos) / SQUARE_SIZE;

	const int isx = x;
	const int isy = y;
	const float dx = x - isx;
	const float dy = y - isy;
	const int hs = isx + isy * gs->mapxp1;

	float h = 0.0f;

	if (dx + dy < 1.0f) {
		// top-left triangle
		const float h00 = heightmap[hs                 ];
		const float h10 = heightmap[hs + 1             ];
		const float h01 = heightmap[hs     + gs->mapxp1];
		const float xdif = (dx) * (h10 - h00);
		const float ydif = (dy) * (h01 - h00);

		h = h00 + xdif + ydif;
	} else {
		// bottom-right triangle
		const float h10 = heightmap[hs + 1             ];
		const float h11 = heightmap[hs + 1 + gs->mapxp1];
		const float h01 = heightmap[hs     + gs->mapxp1];
		const float xdif = (1.0f - dx) * (h01 - h11);
		const float ydif = (1.0f - dy) * (h10 - h11);

		h = h11 + xdif + ydif;
	}

	return h;
}


static inline float LineGroundSquareCol(
	const float*& heightmap,
	const float3*& normalmap,
	const float3& from,
	const float3& to,
	const int& xs,
	const int& ys)
{
	const bool inMap = (xs >= 0) && (ys >= 0) && (xs <= gs->mapxm1) && (ys <= gs->mapym1);
	assert(inMap);
	if (!inMap)
		return -1.0f;

	const float3& faceNormalTL = normalmap[(ys * gs->mapx + xs) * 2    ];
	const float3& faceNormalBR = normalmap[(ys * gs->mapx + xs) * 2 + 1];
	float3 cornerVertex;

	// The terrain grid is "composed" of two right-isosceles triangles
	// per square, so we have to check both faces (triangles) whether an
	// intersection exists
	// for each triangle, we pick one representative vertex

	// top-left corner vertex
	cornerVertex.x = xs * SQUARE_SIZE;
	cornerVertex.z = ys * SQUARE_SIZE;
	cornerVertex.y = heightmap[ys * gs->mapxp1 + xs];

	// project \<to - cornerVertex\> vector onto the TL-normal
	// if \<to\> lies below the terrain, this will be negative
	float toFacePlaneDist = (to - cornerVertex).dot(faceNormalTL);
	float fromFacePlaneDist = 0.0f;

	if (toFacePlaneDist <= 0.0f) {
		// project \<from - cornerVertex\> onto the TL-normal
		fromFacePlaneDist = (from - cornerVertex).dot(faceNormalTL);

		if (fromFacePlaneDist != toFacePlaneDist) {
			const float alpha = fromFacePlaneDist / (fromFacePlaneDist - toFacePlaneDist);
			const float3 col = from * (1.0f - alpha) + to * alpha;

			if ((col.x >= cornerVertex.x) && (col.z >= cornerVertex.z) && (col.x + col.z <= cornerVertex.x + cornerVertex.z + SQUARE_SIZE)) {
				// point of intersection is inside the TL triangle
				return col.distance(from);
			}
		}
	}

	// bottom-right corner vertex
	cornerVertex.x += SQUARE_SIZE;
	cornerVertex.z += SQUARE_SIZE;
	cornerVertex.y = heightmap[(ys + 1) * gs->mapxp1 + (xs + 1)];

	// project \<to - cornerVertex\> vector onto the TL-normal
	// if \<to\> lies below the terrain, this will be negative
	toFacePlaneDist = (to - cornerVertex).dot(faceNormalBR);

	if (toFacePlaneDist <= 0.0f) {
		// project \<from - cornerVertex\> onto the BR-normal
		fromFacePlaneDist = (from - cornerVertex).dot(faceNormalBR);

		if (fromFacePlaneDist != toFacePlaneDist) {
			const float alpha = fromFacePlaneDist / (fromFacePlaneDist - toFacePlaneDist);
			const float3 col = from * (1.0f - alpha) + to * alpha;

			if ((col.x <= cornerVertex.x) && (col.z <= cornerVertex.z) && (col.x + col.z >= cornerVertex.x + cornerVertex.z - SQUARE_SIZE)) {
				// point of intersection is inside the BR triangle
				return col.distance(from);
			}
		}
	}

	return -2.0f;
}



CGround* ground = NULL;

CGround::~CGround()
{
	delete readmap; readmap = NULL;
}

/*
void CGround::CheckColSquare(CProjectile* p, int x, int y)
{
	if (!(x >= 0 && y >= 0 && x < gs->mapx && y < gs->mapy))
		return;

	float xp = p->pos.x;
	float yp = p->pos.y;
	float zp = p->pos.z;

	const float* hm = readmap->GetCornerHeightMapSynced();
	const float3* fn = readmap->GetFaceNormalsSynced();
	const int hmIdx = (y * gs->mapx + x);
	const float xt = x * SQUARE_SIZE;
	const float& yt0 = hm[ y      * gs->mapxp1 + x    ];
	const float& yt1 = hm[(y + 1) * gs->mapxp1 + x + 1];
	const float zt = y * SQUARE_SIZE;

	const float3& fn0 = fn[hmIdx * 2    ];
	const float3& fn1 = fn[hmIdx * 2 + 1];
	const float dx0 = (xp -  xt     );
	const float dy0 = (yp -  yt0    );
	const float dz0 = (zp -  zt     );
	const float dx1 = (xp - (xt + 2));
	const float dy1 = (yp -  yt1    );
	const float dz1 = (zp - (zt + 2));
	const float d0 = dx0 * fn0.x + dy0 * fn0.y + dz0 * fn0.z;
	const float d1 = dx1 * fn1.x + dy1 * fn1.y + dz1 * fn1.z;
	const float s0 = xp + zp - xt - zt - p->radius;
	const float s1 = xp + zp - xt - zt - SQUARE_SIZE * 2 + p->radius;

	if ((d0 <= p->radius) && (s0 < SQUARE_SIZE)) {
		p->Collision();
	}
	if ((d1 <= p->radius) && (s1 > -SQUARE_SIZE)) {
		p->Collision();
	}

	return;
}
*/

inline static bool ClampInMapHeight(float3& from, float3& to)
{
	const float heightAboveMapMax = from.y - readmap->currMaxHeight;
	if (heightAboveMapMax <= 0)
		return false;

	const float3 dir = (to - from);
	if (dir.y >= 0.0f) {
		// both `from` & `to` are above map's height
		from = float3(-1.0f, -1.0f, -1.0f);
		to   = float3(-1.0f, -1.0f, -1.0f);
		return true;
	}

	from += dir * (-heightAboveMapMax / dir.y);
	return true;
}


float CGround::LineGroundCol(float3 from, float3 to, bool synced) const
{
	const float* hm  = readmap->GetCornerHeightMap(synced);
	const float3* nm = readmap->GetFaceNormals(synced);

	const float3 pfrom = from;

	// only for performance -> skip part that can impossibly collide
	// with the terrain, cause it is above map's current max height
	ClampInMapHeight(from, to);

	// handle special cases where the ray origin is out of bounds:
	// need to move <from> to the closest map-edge along the ray
	// (if both <from> and <to> are out of bounds, the ray might
	// still hit)
	// clamping <from> naively would change the direction of the
	// ray, hence we save the distance along it that got skipped
	ClampLineInMap(from, to);

	if (from == to) {
		// ClampLineInMap & ClampInMapHeight set `from == to == vec(-1,-1,-1)`
		// in case the line is outside of the map
		return -1.0f;
	}

	const float skippedDist = (pfrom - from).Length();

	if (synced) { //TODO do this in unsynced too once the map border rendering is finished?
		// check if our start position is underground (assume ground is unpassable for cannons etc.)
		const int sx = from.x / SQUARE_SIZE;
		const int sz = from.z / SQUARE_SIZE;
		const float& h = hm[sz * gs->mapxp1 + sx];
		if (from.y <= h) {
			return 0.0f + skippedDist;
		}
	}

	const float dx = to.x - from.x;
	const float dz = to.z - from.z;
	const int dirx = (dx > 0.0f) ? 1 : -1;
	const int dirz = (dz > 0.0f) ? 1 : -1;

	// Claming is done cause LineGroundSquareCol() operates on the 2 triangles faces each heightmap
	// square is formed of.
	const float ffsx = Clamp(from.x / SQUARE_SIZE, 0.0f, (float)gs->mapxm1);
	const float ffsz = Clamp(from.z / SQUARE_SIZE, 0.0f, (float)gs->mapym1);
	const float ttsx = Clamp(to.x / SQUARE_SIZE, 0.0f, (float)gs->mapxm1);
	const float ttsz = Clamp(to.z / SQUARE_SIZE, 0.0f, (float)gs->mapym1);
	const int fsx = ffsx; // a>=0: int(a):=floor(a)
	const int fsz = ffsz;
	const int tsx = ttsx;
	const int tsz = ttsz;

	bool keepgoing = true;

	if ((fsx == tsx) && (fsz == tsz)) {
		// <from> and <to> are the same
		const float ret = LineGroundSquareCol(hm, nm,  from, to,  fsx, fsz);
		if (ret >= 0.0f) {
			return ret;
		}
	} else if (fsx == tsx) {
		// ray is parallel to z-axis
		int zp = fsz;

		while (keepgoing) {
			const float ret = LineGroundSquareCol(hm, nm,  from, to,  fsx, zp);
			if (ret >= 0.0f) {
				return ret + skippedDist;
			}

			keepgoing = (zp != tsz);

			zp += dirz;
		}
	} else if (fsz == tsz) {
		// ray is parallel to x-axis
		int xp = fsx;

		while (keepgoing) {
			const float ret = LineGroundSquareCol(hm, nm,  from, to,  xp, fsz);
			if (ret >= 0.0f) {
				return ret + skippedDist;
			}

			keepgoing = (xp != tsx);

			xp += dirx;
		}
	} else {
		// general case
		const float rdsx = SQUARE_SIZE / dx; // := 1 / (dx / SQUARE_SIZE)
		const float rdsz = SQUARE_SIZE / dz;

		// we need to shift the `test`-point in case of negative directions
		// case: dir<0
		//  ___________
		// |   |   |   |
		// |___|___|___|
		//     ^cur
		// ^cur + dir
		// >   < range of int(cur + dir)
		//     ^wanted test point := cur - epsilon
		// you can set epsilon=0 and then handle the `beyond end`-case (xn >= 1.0f && zn >= 1.0f) separate
		// (we already need to do so cause of floating point precision limits, so skipping epsilon doesn't add
		// any additional performance cost nor precision issue)
		//
		// case : dir>0
		// in case of `dir>0` the wanted test point is idential with `cur + dir`
		const float testposx = (dx > 0.0f) ? 0.0f : 1.0f;
		const float testposz = (dz > 0.0f) ? 0.0f : 1.0f;

		int curx = fsx;
		int curz = fsz;

		while (keepgoing) {
			// do the collision test with the squares triangles
			const float ret = LineGroundSquareCol(hm, nm,  from, to,  curx, curz);
			if (ret >= 0.0f) {
				return ret + skippedDist;
			}

			// check if we reached the end already and need to stop the loop
			const bool endReached = (curx == tsx && curz == tsz);
			const bool beyondEnd = ((curx - tsx) * dirx > 0) || ((curz - tsz) * dirz > 0);
			assert(!beyondEnd);
			keepgoing = !endReached && !beyondEnd;
			if (!keepgoing)
				 break;

			// calculate the `normalized position` of the next edge in x & z direction
			//  `normalized position`:=n :   x = from.x + n * (to.x - from.x)   (with 0<= n <=1)
			int nextx = curx + dirx;
			int nextz = curz + dirz;
			float xn = (nextx + testposx - ffsx) * rdsx;
			float zn = (nextz + testposz - ffsz) * rdsz;

			// handles the following 2 case:
			// case1: (floor(to.x) == to.x) && (to.x < from.x)
			//   In this case we calculate xn at to.x but set curx = to.x - 1,
			//   and so we would be beyond the end of the ray.
			// case2: floating point precision issues
			if ((nextx - tsx) * dirx > 0) { xn=1337.0f; nextx=tsx; }
			if ((nextz - tsz) * dirz > 0) { zn=1337.0f; nextz=tsz; }

			// advance to the next nearest edge in either x or z dir, or in the case we reached the end make sure
			// we set it to the exact square positions (floating point precision sometimes hinders us to hit it)
			if (xn >= 1.0f && zn >= 1.0f) {
				assert(curx != nextx || curz != nextz);
				curx = nextx;
				curz = nextz;
			} else if (xn < zn) {
				assert(curx != nextx);
				curx = nextx;
			} else {
				assert(curz != nextz);
				curz = nextz;
			}

			const bool beyondEnd_ = ((curx - tsx) * dirx > 0) || ((curz - tsz) * dirz > 0);
			assert(!beyondEnd_);
		}
	}

	return -1.0f;
}


float CGround::GetApproximateHeight(float x, float y, bool synced) const
{
	int xsquare = int(x) / SQUARE_SIZE;
	int ysquare = int(y) / SQUARE_SIZE;
	xsquare = Clamp(xsquare, 0, gs->mapxm1);
	ysquare = Clamp(ysquare, 0, gs->mapym1);

	const float* heightMap = readmap->GetCenterHeightMap(synced);
	return heightMap[xsquare + ysquare * gs->mapx];
}

float CGround::GetHeightAboveWater(float x, float y, bool synced) const
{
	return std::max(0.0f, GetHeightReal(x, y, synced));
}

float CGround::GetHeightReal(float x, float y, bool synced) const
{
	return InterpolateHeight(x, y, readmap->GetCornerHeightMap(synced));
}

float CGround::GetOrigHeight(float x, float y) const
{
	return InterpolateHeight(x, y, readmap->GetOriginalHeightMapSynced());
}


const float3& CGround::GetNormal(float x, float y, bool synced) const
{
	int xsquare = int(x) / SQUARE_SIZE;
	int ysquare = int(y) / SQUARE_SIZE;
	xsquare = Clamp(xsquare, 0, gs->mapxm1);
	ysquare = Clamp(ysquare, 0, gs->mapym1);

	const float3* normalMap = readmap->GetCenterNormals(synced);
	return normalMap[xsquare + ysquare * gs->mapx];
}


float CGround::GetSlope(float x, float y, bool synced) const
{
	int xhsquare = int(x) / (2 * SQUARE_SIZE);
	int yhsquare = int(y) / (2 * SQUARE_SIZE);
	xhsquare = Clamp(xhsquare, 0, gs->hmapx - 1);
	yhsquare = Clamp(yhsquare, 0, gs->hmapy - 1);

	const float* slopeMap = readmap->GetSlopeMap(synced);
	return slopeMap[xhsquare + yhsquare * gs->hmapx];
}


float3 CGround::GetSmoothNormal(float x, float y, bool synced) const
{
	int sx = (int) floor(x / SQUARE_SIZE);
	int sy = (int) floor(y / SQUARE_SIZE);

	if (sy < 1)
		sy = 1;
	if (sx < 1)
		sx = 1;
	if (sy >= gs->mapym1)
		sy = gs->mapy - 2;
	if (sx >= gs->mapxm1)
		sx = gs->mapx - 2;

	float dx = (x / SQUARE_SIZE) - sx;
	float dy = (y / SQUARE_SIZE) - sy;

	int sy2;
	float fy;

	if (dy > 0.5f) {
		sy2 = sy + 1;
		fy = dy - 0.5f;
	} else {
		sy2 = sy - 1;
		fy = 0.5f - dy;
	}

	int sx2;
	float fx;

	if (dx > 0.5f) {
		sx2 = sx + 1;
		fx = dx - 0.5f;
	} else {
		sx2 = sx - 1;
		fx = 0.5f - dx;
	}

	float ify = 1.0f - fy;
	float ifx = 1.0f - fx;

	const float3* normalMap = readmap->GetCenterNormals(synced);

	const float3& n1 = normalMap[sy  * gs->mapx + sx ] * ifx * ify;
	const float3& n2 = normalMap[sy  * gs->mapx + sx2] *  fx * ify;
	const float3& n3 = normalMap[sy2 * gs->mapx + sx ] * ifx * fy;
	const float3& n4 = normalMap[sy2 * gs->mapx + sx2] *  fx * fy;

	float3 norm1 = n1 + n2 + n3 + n4;
	norm1.Normalize();

	return norm1;
}

float CGround::TrajectoryGroundCol(float3 from, const float3& flatdir, float length, float linear, float quadratic) const
{
	float3 dir(flatdir.x, linear, flatdir.z);

	// limit the checking to the `in map part` of the line
	std::pair<float,float> near_far = GetMapBoundaryIntersectionPoints(from, dir*length);

	// outside of map
	if (near_far.second < 0.0f)
		return -1.0;

	const float near = length * std::max(0.0f, near_far.first);
	const float far  = length * std::min(1.0f, near_far.second);

	for (float l = near; l < far; l += SQUARE_SIZE) {
		float3 pos(from + dir*l);
		pos.y += quadratic * l * l;

		if (GetApproximateHeight(pos.x, pos.z) > pos.y) {
			return l;
		}
	}

	return -1.0f;
}