1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
|
/* This file is part of the Spring engine (GPL v2 or later), see LICENSE.html */
#include "System/mmgr.h"
#include <cfloat>
#include "ShadowHandler.h"
#include "Game/Camera.h"
#include "Map/BaseGroundDrawer.h"
#include "Map/MapInfo.h"
#include "Map/ReadMap.h"
#include "Rendering/GlobalRendering.h"
#include "Rendering/FeatureDrawer.h"
#include "Rendering/ProjectileDrawer.h"
#include "Rendering/UnitDrawer.h"
#include "Rendering/Env/ISky.h"
#include "Rendering/Env/ITreeDrawer.h"
#include "Rendering/GL/FBO.h"
#include "Rendering/GL/myGL.h"
#include "Rendering/GL/VertexArray.h"
#include "Rendering/Models/ModelDrawer.h"
#include "Rendering/Shaders/ShaderHandler.h"
#include "System/Config/ConfigHandler.h"
#include "System/EventHandler.h"
#include "System/Matrix44f.h"
#include "System/myMath.h"
#include "System/Log/ILog.h"
#define SHADOWMATRIX_NONLINEAR 0
CONFIG(int, Shadows).defaultValue(0);
CONFIG(int, ShadowMapSize).defaultValue(CShadowHandler::DEF_SHADOWMAP_SIZE);
CONFIG(int, ShadowProjectionMode).defaultValue(CShadowHandler::SHADOWPROMODE_CAM_CENTER);
CShadowHandler* shadowHandler = NULL;
bool CShadowHandler::shadowsSupported = false;
bool CShadowHandler::firstInit = true;
void CShadowHandler::Reload(const char* argv)
{
int nextShadowConfig = (shadowConfig + 1) & 0xF;
int nextShadowMapSize = shadowMapSize;
int nextShadowProMode = shadowProMode;
if (argv != NULL) {
(void) sscanf(argv, "%i %i %i", &nextShadowConfig, &nextShadowMapSize, &nextShadowProMode);
}
configHandler->Set("Shadows", nextShadowConfig & 0xF);
configHandler->Set("ShadowMapSize", Clamp(nextShadowMapSize, int(MIN_SHADOWMAP_SIZE), int(MAX_SHADOWMAP_SIZE)));
configHandler->Set("ShadowProjectionMode", Clamp(nextShadowProMode, int(SHADOWPROMODE_MAP_CENTER), int(SHADOWPROMODE_MIX_CAMMAP)));
Kill();
Init();
}
void CShadowHandler::Init()
{
const bool tmpFirstInit = firstInit;
firstInit = false;
shadowConfig = configHandler->GetInt("Shadows");
shadowMapSize = configHandler->GetInt("ShadowMapSize");
shadowProMode = configHandler->GetInt("ShadowProjectionMode");
shadowGenBits = SHADOWGEN_BIT_NONE;
shadowsLoaded = false;
inShadowPass = false;
shadowTexture = 0;
dummyColorTexture = 0;
if (!tmpFirstInit && !shadowsSupported) {
return;
}
// possible values for the "Shadows" config-parameter:
// < 0: disable and don't try to initialize
// 0: disable, but still check if the hardware is able to run them
// > 0: enabled (by default for all shadow-casting geometry if equal to 1)
if (shadowConfig < 0) {
LOG("[%s] shadow rendering is disabled (config-value %d)", __FUNCTION__, shadowConfig);
return;
}
if (shadowConfig > 0)
shadowGenBits = SHADOWGEN_BIT_MODEL | SHADOWGEN_BIT_MAP | SHADOWGEN_BIT_PROJ | SHADOWGEN_BIT_TREE;
if (shadowConfig > 1) {
shadowGenBits &= (~shadowConfig);
}
if (!globalRendering->haveARB && !globalRendering->haveGLSL) {
LOG_L(L_WARNING, "[%s] GPU does not support either ARB or GLSL shaders for shadow rendering", __FUNCTION__);
return;
}
if (!globalRendering->haveGLSL) {
if (!GLEW_ARB_shadow || !GLEW_ARB_depth_texture || !GLEW_ARB_texture_env_combine) {
LOG_L(L_WARNING, "[%s] required OpenGL ARB-extensions missing for shadow rendering", __FUNCTION__);
// NOTE: these should only be relevant for FFP shadows
// return;
}
if (!GLEW_ARB_shadow_ambient) {
// can't use arbitrary texvals in case the depth comparison op fails (only 0)
LOG_L(L_WARNING, "[%s] \"ARB_shadow_ambient\" extension missing (will probably make shadows darker than they should be)", __FUNCTION__);
}
}
if (!InitDepthTarget()) {
LOG_L(L_ERROR, "[%s] failed to initialize depth-texture FBO", __FUNCTION__);
return;
}
if (tmpFirstInit) {
shadowsSupported = true;
}
if (shadowConfig == 0) {
// free any resources allocated by InitDepthTarget()
glDeleteTextures(1, &shadowTexture ); shadowTexture = 0;
glDeleteTextures(1, &dummyColorTexture); dummyColorTexture = 0;
// shadowsLoaded is still false
return;
}
LoadShadowGenShaderProgs();
}
void CShadowHandler::Kill()
{
if (shadowsLoaded) {
glDeleteTextures(1, &shadowTexture);
glDeleteTextures(1, &dummyColorTexture);
}
shaderHandler->ReleaseProgramObjects("[ShadowHandler]");
shadowGenProgs.clear();
}
void CShadowHandler::LoadShadowGenShaderProgs()
{
#define sh shaderHandler
shadowGenProgs.resize(SHADOWGEN_PROGRAM_LAST);
static const std::string shadowGenProgNames[SHADOWGEN_PROGRAM_LAST] = {
"ARB/unit_genshadow.vp",
"ARB/groundshadow.vp",
"ARB/treeShadow.vp",
"ARB/treeFarShadow.vp",
"ARB/projectileshadow.vp",
};
static const std::string shadowGenProgHandles[SHADOWGEN_PROGRAM_LAST] = {
"ShadowGenShaderProgModel",
"ShadowGenshaderProgMap",
"ShadowGenshaderProgTreeNear",
"ShadowGenshaderProgTreeDist",
"ShadowGenshaderProgProjectile",
};
static const std::string shadowGenProgDefines[SHADOWGEN_PROGRAM_LAST] = {
"#define SHADOWGEN_PROGRAM_MODEL\n",
"#define SHADOWGEN_PROGRAM_MAP\n",
"#define SHADOWGEN_PROGRAM_TREE_NEAR\n",
"#define SHADOWGEN_PROGRAM_TREE_DIST\n",
"#define SHADOWGEN_PROGRAM_PROJECTILE\n",
};
static const std::string extraDef =
#if (SHADOWMATRIX_NONLINEAR == 1)
"#define SHADOWMATRIX_NONLINEAR 0\n";
#else
"#define SHADOWMATRIX_NONLINEAR 1\n";
#endif
if (globalRendering->haveGLSL) {
for (int i = 0; i < SHADOWGEN_PROGRAM_LAST; i++) {
Shader::IProgramObject* po = sh->CreateProgramObject("[ShadowHandler]", shadowGenProgHandles[i] + "GLSL", false);
Shader::IShaderObject* so = sh->CreateShaderObject("GLSL/ShadowGenVertProg.glsl", shadowGenProgDefines[i] + extraDef, GL_VERTEX_SHADER);
po->AttachShaderObject(so);
po->Link();
po->SetUniformLocation("shadowParams");
po->SetUniformLocation("cameraDirX"); // used by SHADOWGEN_PROGRAM_TREE_NEAR
po->SetUniformLocation("cameraDirY"); // used by SHADOWGEN_PROGRAM_TREE_NEAR
po->SetUniformLocation("treeOffset"); // used by SHADOWGEN_PROGRAM_TREE_NEAR
po->Validate();
shadowGenProgs[i] = po;
}
} else {
for (int i = 0; i < SHADOWGEN_PROGRAM_LAST; i++) {
Shader::IProgramObject* po = sh->CreateProgramObject("[ShadowHandler]", shadowGenProgHandles[i] + "ARB", true);
Shader::IShaderObject* so = sh->CreateShaderObject(shadowGenProgNames[i], "", GL_VERTEX_PROGRAM_ARB);
po->AttachShaderObject(so);
po->Link();
shadowGenProgs[i] = po;
}
}
shadowsLoaded = true;
#undef sh
}
bool CShadowHandler::InitDepthTarget()
{
// this can be enabled for debugging
// it turns the shadow render buffer in a buffer with color
bool useColorTexture = false;
if (!fb.IsValid()) {
LOG_L(L_ERROR, "[%s] framebuffer not valid", __FUNCTION__);
return false;
}
glGenTextures(1, &shadowTexture);
glBindTexture(GL_TEXTURE_2D, shadowTexture);
float one[4] = {1.0f, 1.0f, 1.0f, 1.0f};
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, one);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (useColorTexture) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, shadowMapSize, shadowMapSize, 0, GL_RGB, GL_UNSIGNED_BYTE, NULL);
} else {
const GLint texFormat = globalRendering->support24bitDepthBuffers ? GL_DEPTH_COMPONENT24 : GL_DEPTH_COMPONENT16;
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
//glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
glTexParameteri(GL_TEXTURE_2D, GL_DEPTH_TEXTURE_MODE, GL_LUMINANCE);
glTexImage2D(GL_TEXTURE_2D, 0, texFormat, shadowMapSize, shadowMapSize, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
}
glGenTextures(1, &dummyColorTexture);
if (globalRendering->atiHacks) {
// ATI shadows fail without an attached color texture
glBindTexture(GL_TEXTURE_2D, dummyColorTexture);
// this dummy should be as small as possible not to waste memory
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA4, shadowMapSize, shadowMapSize, 0, GL_ALPHA, GL_UNSIGNED_BYTE, NULL);
}
glBindTexture(GL_TEXTURE_2D, 0);
fb.Bind();
if (useColorTexture) {
fb.AttachTexture(shadowTexture);
} else {
if (globalRendering->atiHacks)
fb.AttachTexture(dummyColorTexture);
fb.AttachTexture(shadowTexture, GL_TEXTURE_2D, GL_DEPTH_ATTACHMENT_EXT);
}
const int buffer = (useColorTexture || globalRendering->atiHacks) ? GL_COLOR_ATTACHMENT0_EXT : GL_NONE;
glDrawBuffer(buffer);
glReadBuffer(buffer);
const bool status = fb.CheckStatus("SHADOW");
fb.Unbind();
return status;
}
void CShadowHandler::DrawShadowPasses()
{
inShadowPass = true;
glPushAttrib(GL_POLYGON_BIT | GL_ENABLE_BIT);
glEnable(GL_CULL_FACE);
glCullFace(GL_BACK);
eventHandler.DrawWorldShadow();
if ((shadowGenBits & SHADOWGEN_BIT_TREE) != 0)
treeDrawer->DrawShadowPass();
if ((shadowGenBits & SHADOWGEN_BIT_PROJ) != 0)
projectileDrawer->DrawShadowPass();
if ((shadowGenBits & SHADOWGEN_BIT_MODEL) != 0) {
unitDrawer->DrawShadowPass();
modelDrawer->Draw();
featureDrawer->DrawShadowPass();
}
glCullFace(GL_FRONT);
// cull front-faces during the terrain shadow pass: sun direction
// can be set so oblique that geometry back-faces are visible (eg.
// from hills near map edges) from its POV
// (could just disable culling of terrain faces, but we also want
// to prevent overdraw in such low-angle passes)
if ((shadowGenBits & SHADOWGEN_BIT_MAP) != 0)
readmap->GetGroundDrawer()->DrawShadowPass();
glPopAttrib();
inShadowPass = false;
}
void CShadowHandler::SetShadowMapSizeFactors()
{
#if (SHADOWMATRIX_NONLINEAR == 1)
// note: depends on CalcMinMaxView(), which is no longer called
const float shadowMapX = sqrt( fabs(shadowProjMinMax.y) ); // sqrt( |x2| )
const float shadowMapY = sqrt( fabs(shadowProjMinMax.w) ); // sqrt( |y2| )
const float shadowMapW = shadowMapX + sqrt( fabs(shadowProjMinMax.x) ); // sqrt( |x2| ) + sqrt( |x1| )
const float shadowMapH = shadowMapY + sqrt( fabs(shadowProjMinMax.z) ); // sqrt( |y2| ) + sqrt( |y1| )
shadowTexProjCenter.x = 1.0f - (shadowMapX / shadowMapW);
shadowTexProjCenter.y = 1.0f - (shadowMapY / shadowMapH);
if (shadowMapSize >= 2048) {
shadowTexProjCenter.z = 0.01f;
shadowTexProjCenter.w = -0.1f;
} else {
shadowTexProjCenter.z = 0.0025f;
shadowTexProjCenter.w = -0.05f;
}
#else
shadowTexProjCenter.x = 0.5f;
shadowTexProjCenter.y = 0.5f;
shadowTexProjCenter.z = FLT_MAX;
shadowTexProjCenter.w = 1.0f;
#endif
}
void CShadowHandler::CreateShadows()
{
fb.Bind();
glDisable(GL_BLEND);
glDisable(GL_LIGHTING);
glDisable(GL_ALPHA_TEST);
glDisable(GL_TEXTURE_2D);
glShadeModel(GL_FLAT);
glColor4f(1.0f, 1.0f, 1.0f, 1.0f);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
glDepthMask(GL_TRUE);
glEnable(GL_DEPTH_TEST);
glViewport(0, 0, shadowMapSize, shadowMapSize);
// glClearColor(0, 0, 0, 0);
// glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClear(GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0, 1, 0, 1, 0, -1);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
const ISkyLight* L = sky->GetLight();
// sun direction is in world-space, invert it
sunDirZ = -L->GetLightDir();
sunDirX = (sunDirZ.cross(UpVector)).ANormalize();
sunDirY = (sunDirX.cross(sunDirZ)).ANormalize();
SetShadowMapSizeFactors();
// NOTE:
// the xy-scaling factors from CalcMinMaxView do not change linearly
// or smoothly with camera movements, creating visible artefacts (eg.
// large jumps in shadow resolution)
//
// therefore, EITHER use "fixed" scaling values such that the entire
// map barely fits into the sun's frustum (by pretending it is embedded
// in a sphere and taking its diameter), OR variable scaling such that
// everything that can be seen by the camera maximally fills the sun's
// frustum (choice of projection-style is left to the user and can be
// changed at run-time)
//
// the first option means larger maps will have more blurred/aliased
// shadows if the depth buffer is kept at the same size, but no (map)
// geometry is ever omitted
//
// the second option means shadows have higher average resolution, but
// become less sharp as the viewing volume increases (through eg.camera
// rotations) and geometry can be omitted in some cases
//
// NOTE:
// when DynamicSun is enabled, the orbit is always circular in the xz
// plane, instead of elliptical when the map has an aspect-ratio != 1
//
const float xyScale = GetShadowProjectionRadius(camera, centerPos, -sunDirZ);
const float xScale = xyScale;
const float yScale = xyScale;
const float zScale = globalRendering->viewRange;
shadowMatrix[ 0] = sunDirX.x / xScale;
shadowMatrix[ 1] = sunDirY.x / yScale;
shadowMatrix[ 2] = sunDirZ.x / zScale;
shadowMatrix[ 4] = sunDirX.y / xScale;
shadowMatrix[ 5] = sunDirY.y / yScale;
shadowMatrix[ 6] = sunDirZ.y / zScale;
shadowMatrix[ 8] = sunDirX.z / xScale;
shadowMatrix[ 9] = sunDirY.z / yScale;
shadowMatrix[10] = sunDirZ.z / zScale;
// rotate the target position into sun-space for the translation
shadowMatrix[12] = (-sunDirX.dot(centerPos) / xScale);
shadowMatrix[13] = (-sunDirY.dot(centerPos) / yScale);
shadowMatrix[14] = (-sunDirZ.dot(centerPos) / zScale) + 0.5f;
glLoadMatrixf(shadowMatrix.m);
// set the shadow-parameter registers
// NOTE: so long as any part of Spring rendering still uses
// ARB programs at run-time, these lines can not be removed
// (all ARB programs share the same environment)
glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, 16, shadowTexProjCenter.x, shadowTexProjCenter.y, 0.0f, 0.0f);
glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, 17, shadowTexProjCenter.z, shadowTexProjCenter.z, 0.0f, 0.0f);
glProgramEnvParameter4fARB(GL_VERTEX_PROGRAM_ARB, 18, shadowTexProjCenter.w, shadowTexProjCenter.w, 0.0f, 0.0f);
if (globalRendering->haveGLSL) {
for (int i = 0; i < SHADOWGEN_PROGRAM_LAST; i++) {
shadowGenProgs[i]->Enable();
shadowGenProgs[i]->SetUniform4fv(0, &shadowTexProjCenter.x);
shadowGenProgs[i]->Disable();
}
}
if (L->GetLightIntensity() > 0.0f) {
// move view into sun-space
const float3 oldup = camera->up;
camera->right = sunDirX;
camera->up = sunDirY;
DrawShadowPasses();
camera->up = oldup;
}
glShadeModel(GL_SMOOTH);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
// we do this later to save render context switches (this is one of the slowest opengl operations!)
// fb.Unbind();
// glViewport(globalRendering->viewPosX,0,globalRendering->viewSizeX,globalRendering->viewSizeY);
}
float CShadowHandler::GetShadowProjectionRadius(CCamera* cam, float3& proPos, const float3& proDir) const {
float radius = 1.0f;
switch (shadowProMode) {
case SHADOWPROMODE_CAM_CENTER: {
radius = GetOrthoProjectedFrustumRadius(cam, proPos);
} break;
case SHADOWPROMODE_MAP_CENTER: {
radius = GetOrthoProjectedMapRadius(proDir, proPos);
} break;
case SHADOWPROMODE_MIX_CAMMAP: {
static float3 opfPos;
static float3 opmPos;
const float opfRad = GetOrthoProjectedFrustumRadius(cam, opfPos);
const float opmRad = GetOrthoProjectedMapRadius(proDir, opmPos);
if (opfRad <= opmRad) { radius = opfRad; proPos = opfPos; }
if (opmRad <= opfRad) { radius = opmRad; proPos = opmPos; }
} break;
}
return radius;
}
float CShadowHandler::GetOrthoProjectedMapRadius(const float3& sunDir, float3& projectionMidPos) const {
// to fit the map inside the frustum, we need to know
// the distance from one corner to its opposing corner
//
// this distance is maximal when the sun direction is
// orthogonal to the diagonal, but in other cases we
// can gain some precision by projecting the diagonal
// onto a vector orthogonal to the sun direction and
// using the length of that projected vector instead
//
// note: "radius" is actually the diameter
static const float maxMapDiameter = math::sqrtf(Square(gs->mapx * SQUARE_SIZE) + Square(gs->mapy * SQUARE_SIZE));
static float curMapDiameter = 0.0f;
static float3 sunDir3D = ZeroVector;
if ((sunDir3D != sunDir)) {
float3 sunDir2D;
float3 mapVerts[2];
sunDir3D = sunDir;
sunDir2D.x = sunDir3D.x;
sunDir2D.z = sunDir3D.z;
sunDir2D.ANormalize();
if (sunDir2D.x >= 0.0f) {
if (sunDir2D.z >= 0.0f) {
// use diagonal vector from top-right to bottom-left
mapVerts[0] = float3(gs->mapx * SQUARE_SIZE, 0.0f, 0.0f);
mapVerts[1] = float3( 0.0f, 0.0f, gs->mapy * SQUARE_SIZE);
} else {
// use diagonal vector from top-left to bottom-right
mapVerts[0] = float3( 0.0f, 0.0f, 0.0f);
mapVerts[1] = float3(gs->mapx * SQUARE_SIZE, 0.0f, gs->mapy * SQUARE_SIZE);
}
} else {
if (sunDir2D.z >= 0.0f) {
// use diagonal vector from bottom-right to top-left
mapVerts[0] = float3(gs->mapx * SQUARE_SIZE, 0.0f, gs->mapy * SQUARE_SIZE);
mapVerts[1] = float3( 0.0f, 0.0f, 0.0f);
} else {
// use diagonal vector from bottom-left to top-right
mapVerts[0] = float3( 0.0f, 0.0f, gs->mapy * SQUARE_SIZE);
mapVerts[1] = float3(gs->mapx * SQUARE_SIZE, 0.0f, 0.0f);
}
}
const float3 v1 = (mapVerts[1] - mapVerts[0]).ANormalize();
const float3 v2 = float3(-sunDir2D.z, 0.0f, sunDir2D.x);
curMapDiameter = maxMapDiameter * v2.dot(v1);
projectionMidPos.x = (gs->mapx * SQUARE_SIZE) * 0.5f;
projectionMidPos.z = (gs->mapy * SQUARE_SIZE) * 0.5f;
projectionMidPos.y = ground->GetHeightReal(projectionMidPos.x, projectionMidPos.z, false);
}
return curMapDiameter;
}
float CShadowHandler::GetOrthoProjectedFrustumRadius(CCamera* cam, float3& projectionMidPos) const {
cam->GetFrustumSides(0.0f, 0.0f, 1.0f, true);
cam->ClipFrustumLines(true, -10000.0f, 400096.0f);
const std::vector<CCamera::FrustumLine>& sides = cam->negFrustumSides;
if (sides.empty())
return 0.0f;
// two points per side; last point is used for the geometric average
// there are never more than 5 side-lines (10 points), so reserve 16
static std::vector<float3> frustumPoints(16, ZeroVector);
float3 frustumCenter = ZeroVector;
float frustumRadius = 0.0f;
for (unsigned int i = 0, j = 0; i < sides.size(); i++) {
const CCamera::FrustumLine* line = &sides[i];
if (line->minz < line->maxz) {
const float x0 = line->base + (line->dir * line->minz), z0 = line->minz;
const float x1 = line->base + (line->dir * line->maxz), z1 = line->maxz;
// TODO: smarter clamping
const float
cx0 = Clamp(x0, 0.0f, (float3::maxxpos + 1.0f)),
cz0 = Clamp(z0, 0.0f, (float3::maxzpos + 1.0f)),
cx1 = Clamp(x1, 0.0f, (float3::maxxpos + 1.0f)),
cz1 = Clamp(z1, 0.0f, (float3::maxzpos + 1.0f));
const float3 p0 = float3(cx0, ground->GetHeightReal(cx0, cz0, false), cz0);
const float3 p1 = float3(cx1, ground->GetHeightReal(cx1, cz1, false), cz1);
frustumPoints[j + 0] = p0;
frustumPoints[j + 1] = p1;
frustumCenter += p0;
frustumCenter += p1;
j += 2;
}
}
projectionMidPos.x = frustumCenter.x / (sides.size() * 2);
projectionMidPos.z = frustumCenter.z / (sides.size() * 2);
projectionMidPos.y = ground->GetHeightReal(projectionMidPos.x, projectionMidPos.z, false);
// calculate the radius of the minimally-bounding sphere around the projected frustum
for (unsigned int n = 0; n < (sides.size() * 2); n++) {
const float3& pos = frustumPoints[n];
const float rad = (pos - projectionMidPos).SqLength();
frustumRadius = std::max(frustumRadius, rad);
}
static const float maxMapDiameter = math::sqrtf(Square(gs->mapx * SQUARE_SIZE) + Square(gs->mapy * SQUARE_SIZE));
const float frustumDiameter = math::sqrtf(frustumRadius) * 2.0f;
return std::min(maxMapDiameter, frustumDiameter);
}
#if 0
void CShadowHandler::CalcMinMaxView()
{
// derive the size of the shadow-map from the
// intersection points of the camera frustum
// with the xz-plane
cam2->GetFrustumSides(0.0f, 0.0f, 1.0f, true);
cam2->ClipFrustumLines(true, -20000.0f, gs->mapy * SQUARE_SIZE + 20000.0f);
shadowProjMinMax.x = -100.0f;
shadowProjMinMax.y = 100.0f;
shadowProjMinMax.z = -100.0f;
shadowProjMinMax.w = 100.0f;
//if someone could figure out how the frustum and nonlinear shadow transform really works (and not use the SJan trial and error method)
//so that we can skip this sort of fudge factors it would be good
float borderSize = 270.0f;
float maxSize = globalRendering->viewRange * 0.75f;
if (shadowMapSize == 1024) {
borderSize *= 1.5f;
maxSize *= 1.2f;
}
const std::vector<CCamera::FrustumLine>& negSides = cam2->negFrustumSides;
const std::vector<CCamera::FrustumLine>& posSides = cam2->posFrustumSides;
std::vector<CCamera::FrustumLine>::const_iterator fli;
if (!negSides.empty()) {
for (fli = negSides.begin(); fli != negSides.end(); ++fli) {
if (fli->minz < fli->maxz) {
float3 p[5];
p[0] = float3(fli->base + fli->dir * fli->minz, 0.0f, fli->minz);
p[1] = float3(fli->base + fli->dir * fli->maxz, 0.0f, fli->maxz);
p[2] = float3(fli->base + fli->dir * fli->minz, readmap->initMaxHeight + 200, fli->minz);
p[3] = float3(fli->base + fli->dir * fli->maxz, readmap->initMaxHeight + 200, fli->maxz);
p[4] = centerPos;
for (int a = 0; a < 5; ++a) {
const float xd = (p[a] - centerPos).dot(sunDirX);
const float yd = (p[a] - centerPos).dot(sunDirY);
if (xd + borderSize > shadowProjMinMax.y) { shadowProjMinMax.y = xd + borderSize; }
if (xd - borderSize < shadowProjMinMax.x) { shadowProjMinMax.x = xd - borderSize; }
if (yd + borderSize > shadowProjMinMax.w) { shadowProjMinMax.w = yd + borderSize; }
if (yd - borderSize < shadowProjMinMax.z) { shadowProjMinMax.z = yd - borderSize; }
}
}
}
if (shadowProjMinMax.x < -maxSize) { shadowProjMinMax.x = -maxSize; }
if (shadowProjMinMax.y > maxSize) { shadowProjMinMax.y = maxSize; }
if (shadowProjMinMax.z < -maxSize) { shadowProjMinMax.z = -maxSize; }
if (shadowProjMinMax.w > maxSize) { shadowProjMinMax.w = maxSize; }
} else {
shadowProjMinMax.x = -maxSize;
shadowProjMinMax.y = maxSize;
shadowProjMinMax.z = -maxSize;
shadowProjMinMax.w = maxSize;
}
// xScale = (shadowProjMinMax.y - shadowProjMinMax.x) * 1.5f;
// yScale = (shadowProjMinMax.w - shadowProjMinMax.z) * 1.5f;
}
#endif
|